Escoamentos Compressíveis Temperatura de estagnação

Um sistema de acesso espacial atinge Mach 12 numa altitude em que a temperatura atmosférica é 220K. Qual a temperatura de estagnação?

www.cienciastermicas.com

Um sistema de acesso espacial atinge Mach 12 numa altitude em que a temperatura atmosférica é 220K. Qual a temperatura de estagnação?

An:
$$k = 1.4$$
 $t = 220k$
 $t = 220k$
 $M = 12$
 $T = 1 + (1.4.1) \cdot 12^2$
 $T = 29.8 \times 220k = 6556k$

$$h_0 = h_1 + \frac{V_1^2}{2} = T_0 = T_1 + \frac{V_1^2}{2!p}$$

$$M = \underbrace{Y}_{c} = V = M. C = M. \sqrt{hRT}$$

$$K \frac{R}{C\rho} = k \left(\frac{C\rho - C\nu}{C\rho} \right) = k \left(\frac{C\rho}{C\rho} - \frac{C\nu}{C\rho} \right) = k \left(\frac{1}{K} \right) = k \left(\frac{k-1}{K} \right) = k-1$$

$$\int \frac{1_0}{7} = 1 + \frac{k \cdot 1}{2} | \mathbf{M}^2$$

Um sistema de acesso espacial atinge Mach 12 numa altitude em que a temperatura atmosférica é 220K. Qual a temperatura de estagnação?

tropic Flo	w Relations Perfect Gas, Gamma =	: 1.4 , angles in degrees.
Mach number=	Mach angle=	P-M angle=
p/p ₀ =	rho/rho ₀ =	T/T ₀ =
p/p*=	rho/rho*=	T/T*=
nal Shock	Relations Perfect Gas, Gamma =	1.4
mal Shock NPUT: M1 $M_1 = $	Relations Perfect Gas, Gamma = $\mathbf{v} = 2.0$ Calcula $\mathbf{M_{2}} = \mathbf{M_{2}}$	

$$M = J_1$$
 $\Rightarrow T_0 = 0.03355104$
 $T_0 = 4556.00K$