
Escoamentos Compressíveis Aceleração em Bocal isoentrópico

Nitrogênio é armazenado num grande cilindro à pressão de 1MPa e 298K. Se o Nitrogênio é liberado para a atmosfera através de um bocal que o acelera para Mach 1, qual a velocidade ele atinge?

Nitrogênio: K=1,4; R=297J/Kg.K

Nitrogênio é armazenado num grande cilindro à pressão de 1MPa e 298K. Se o Nitrogênio é liberado para a atmosfera através de um bocal que o acelera para Mach 1, qual a velocidade ele atinge?

Nitrogênio: K=1,4; R=297J/Kg.K

Condição de estagnação

$$M=1$$
 $M=\frac{V}{C}$ \sim $V=M.C$

$$\frac{t_{2}}{t} = 1 + \frac{(k-1)M^{2}}{2} \sim \frac{t_{3}}{T^{3}} = 1 + \frac{|Y-1|}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$\frac{T_0}{T} = 1.2$$
 = D $t = \frac{T_0}{1.2} = \frac{298}{1.2} = D$ $t = 248.3k = T*$

$$V^* = 321 \, \text{m/s}$$

$$\int_{T}^{2} = 1 + (\frac{k}{2}) M^{2} \qquad \text{No} = h + \frac{\sqrt{2}}{2}$$

$$\int_{T}^{2} = 1 + (\frac{k}{2}) . 1^{2}$$

$$\int_{T}^{2} = 2 + \frac{k}{2}$$

$$\int_{T}^{2} = \frac{2 + k}{2}$$

$$\int_{T}^{2} = \frac{k + 1}{2}$$

$$T*= 298k \times \frac{2}{1.4+1} \sim T*= 248, 33k (248, 33)$$

Nitrogênio é armazenado num grande cilindro à pressão de 1MPa e 298K. Se o Nitrogênio é liberado para a atmosfera através de um bocal que o acelera para Mach 1, qual a velocidade ele atinge? Nitrogênio: K=1,4; R=297J/Kg.K

Isentropic Flow Tables $\gamma = 1.4$							
M	P/P ₀	T/T ₀	A/A*	M	P/P ₀	T/T ₀	A/A
0.70	0.7209	0.9107	1.0944	1.05	0.4979	0.8193	1.00
0.71	0.7145	0.9084	1.0873	1.06	0.4919	0.8165	1.00
0.72	0.7080	0.9061	1.0806	1.07	0.4860	0.8137	1.00
0.73	0.7016	0.9037	1.0742	1.08	0.4800	0.8108	1.00
0.74	0.6951	0.9013	1.0681	1.09	0.4742	0.8080	1.00
0.75	0.6886	0.8989	1.0624	1.10	0.4684	0.8052	1.00
0.76	0.6821	0.8964	1.0570	1.11	0.4626	0.8023	1.00
0.77	0.6756	0.8940	1.0519	1.12	0.4568	0.7994	1.01
0.78	0.6691	0.8915	1.0471	1.13	0.4511	0.7966	1.01
0.79	0.6625	0.8890	1.0425	1.14	0.4455	0.7937	1.01
0.80	0.6560	0.8865	1.0382	1.15	0.4398	0.7908	1.01
0.81	0.6495	0.8840	1.0342	1.16	0.4343	0.7879	1.01
0.82	0.6430	0.8815	1.0305	1.17	0.4287	0.7851	1.02
0.83	0.6365	0.8789	1.0270	1.18	0.4232	0.7822	1.02
0.84	0.6300	0.8763	1.0237	1.19	0.4178	0.7793	1.02
0.85	0.6235	0.8737	1.0207	1.20	0.4124	0.7764	1.03
0.86	0.6170	0.8711	1.0179	1.21	0.4070	0.7735	1.03
0.87	0.6106	0.8685	1.0153	1.22	0.4017	0.7706	1.03
0.88	0.6041	0.8659	1.0129	1.23	0.3964	0.7677	1.03
0.89	0.5977	0.8632	1.0108	1.24	0.3912	0.7648	1.04
0.90	0.5913	0.8606	1.0089	1.25	0.3861	0.7619	1.04
0.91	0.5849	0.8579	1.0071	1.26	0.3809	0.7590	1.05
0.92	0.5785	0.8552	1.0056	1.27	0.3759	0.7561	1.05
0.93	0.5721	0.8525	1.0043	1.28	0.3708	0.7532	1.05
0.94	0.5658	0.8498	1.0031	1.29	0.3658	0.7503	1.06
0.95	0.5595	0.8471	1.0021	1.30	0.3609	0.7474	1.06
0.96	0.5532	0.8444	1.0014	1.31	0.3560	0.7445	1.07
0.97	0.5469	0.8416	1.0008	1.32	0.3512	0.7416	1.07
0.98	0.5407	0.8389	1.0003	1.33	0.3464	0.7387	1.07
0.99	0.5345	0.8361	1.0001	1.34	0.3417	0.7358	1.08
1.00	0.5283	0.8333	1.0000	1.35	0.3370	0.7329	1.08
1.01	0.5221	0.8306	1.0001	1.36	0.3323	0.7300	1.09
1.02	0.5160	0.8278	1.0003	1.37	0.3277	0.7271	1.09
1.03	0.5099	0.8250	1.0007	1.38	0.3232	0.7242	1.10
1.04	0.5039	0.8222	1.0013	1.39	0.3187	0.7213	1.10

$$\int_{0}^{2} \int_{0}^{1} dx$$

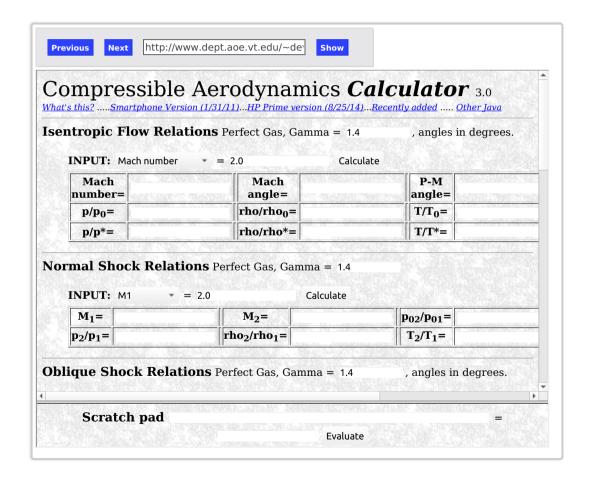
$$\int_{0}^{2} \int_{0}^{2} \int_{0}^{1} dx$$

$$\int_{0}^{2} \int_{0}^{1} dx$$

$$\int_{0}^{2} \int_{0}^{2} \int_{0}^{1} dx$$

$$\int_{0}^{2} \int_{0}^{1} dx$$

$$\int_{0}^{2} \int_{0}^{2} \int_{0}^{1} dx$$


$$\int_{0}^{2} \int_{0}^{2} \int_{0}^{1} dx$$

$$\int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} dx$$

$$\int_{0}^{2} \int_{0}^{2} \int_{0}^{2} dx$$

Nitrogênio é armazenado num grande cilindro à pressão de 1MPa e 298K. Se o Nitrogênio é liberado para a atmosfera através de um bocal que o acelera para Mach 1, qual a velocidade ele atinge? Nitrogênio: K=1,4; R=297J/Kg.K

M=J
$$\frac{1}{7} = 0,8333$$

$$\frac{1}{7} = 1$$

$$\frac{1}{7} = 0,8333 \times 298k$$

$$\frac{1}{7} = 1 \times 298,33 \cdot 298k$$

$$\frac{1}{7} = 1 \times 298,33 \cdot 298k$$