PROF. RODRIGO LISITA RIBERA

Aluno:	Matrícula:	
	2ª Avaliação – Refrigeração e Ar Condicionado – Duração: 2hrs/Aula	

LEIA COM ATENÇÃO TODAS AS INSTRUÇÕES ABAIXO.

- 1. É obrigatório o preenchimento de TODOS os campos do cabeçalho.
- 2. Esta avaliação tem valor total de 10,0 pontos.
- 3. Prova sem consulta.
- 4. Essa avaliação compreende testes de múltipla escolha e questões discursivas.
- 5. As questões discursivas deverão ser respondidas exclusivamente no espaço destinado às respostas e com TODAS as suas resoluções.
- 6. Questões respondidas com dados em desacordo aos fornecidos no enunciado serão anuladas.
- 7. Não é permitido utilizar folha adicional para cálculo ou rascunho.
- 8. Faça a prova com tinta azul ou preta, não terá direito a reclamações posteriores questões feitas a lápis.
- 9. Desligue o celular e observe o tempo disponível para resolução.
- 10. Tempo de prova: 90 minutos
- 11. A interpretação do enunciado é parte da avaliação.
- 12. É permitido apenas o uso de calculadora científica não programável.

FORMULÁRIO

Propriedades do Ar:

Calor específico a pressão constante: 1,004 KJ/Kg.K

Calor específico a volume constante: 0,717 KJ/Kg.K

K=1,4

R=0,287 KJ/Kg.K

Aluno:	Matrícula:	
	2ª Avaliação – Refrigeração e Ar Condicionado – Duração: 2hrs/Aula	

TABELA B.5.2 (continuação) R-134a superaquecido												
Temp.	V	и	h	s	V	и	h	s	V	и	h	s
°C	(m³/kg)	(kJ/kg)		(kJ/kg K)	(m³/kg)	(kJ/kg)		(kJ/kg K)	(m³/kg)	(kJ/kg)		(kJ/kg K
			15,66 °C)			600 kPa (800 kPa (
Sat.	0,04126	386,82	407,45	1,7198	0,03442	390,01	410,66	1,7179	0,02571	395,15	415,72	1,7150
20	0,04226	390,52	411,65	1,7342			-				-	
30	0,04446	398,99	421,22	1,7663	0,03609	397,44	419,09	1,7461		-	-	
40	0,04656	407,44	430,72	1,7971	0,03796	406,11	428,88	1,7779	0,02711	403,17	424,86	1,7446
50	0,04858	415,91	440,20	1,8270	0,03974	414,75	438,59	1,8084	0,02861	412,23	435,11	1,7768
60	0,05055	424,44	449,72	1,8560	0,04145	423,41	448,28	1,8379	0,03002	421,20	445,22	1,8076
70	0,05247	433,06	459,29	1,8843	0,04311	432,13	457,99	1,8666	0,03137	430,17	455,27	1,8373
80	0,05435	441,77	468,94	1,9120	0,04473	440,93	467,76	1,8947	0,03268	439,17	465,31	1,8662
90	0,05620	450,59	478,69	1,9392	0,04632	449,82	477,61	1,9222	0,03394	448,22	475,38	1,8943
100	0,05804	459,53	488,55	1,9660	0,04788	458,82	487,55	1,9492	0,03518	457,35	485,50	1,9218
110	0,05985	468,60	498,52	1,9924	0,04943	467,94	497,59	1,9758	0,03639	466,58	495,70	1,9487
120	0,06164	477,79	508,61	2,0184	0,05095	477,18	507,75	2,0019	0,03758	475,92	505,99	1,9753
130	0,06342	487,13	518,83	2,0440	0,05246	486,55	518,03	2,0277	0,03876	485,37	516,38	2,0014
140	0,06518	496,59	529,19	2,0694	0,05396	496,05	528,43	2,0532	0,03992	494,94	526,88	2,0271
150	0,06694	506,20	539,67	2,0945	0,05544	505,69	538,95	2,0784	0,04107	504,64	537,50	2,0525
160	0,06869	515,95	550,29	2,1193	0,05692	515,46	549,61	2,1033	0,04221	514,46	548,23	2,0775
170	0,07043	525,83	561,04	2,1438	0,05839	525,36	560,40	2,1279	0,04334	524,42	559,09	2,1023
180									0,04446	534,51	570,08	2,1268
		1000 kPa	(39,37°C)	1200 kPa (46,31°C)				1400 kPa (52,42°C)			
Sat.	0,02038	399,16	419,54	1,7125	0,01676	402,37	422,49	1,7102	0,01414	404,98	424,78	1,7077
40	0,02047	399,78	420,25	1,7148						-		
50	0,02185	409,39	431,24	1,7494	0,01724	406,15	426,84	1,7237				
60	0,02311	418,78	441,89	1,7818	0,01844	416,08	438,21	1,7584	0,01503	413,03	434,08	1,7360
70	0,02429	428,05	452,34	1,8127	0,01953	425,74	449,18	1,7908	0,01608	423,20	445,72	1,7704
80	0,02542	437,29	462,70	1,8425	0,02055	435,27	459,92	1,8217	0,01704	433,09	456,94	1,8026
90	0,02650	446,53	473,03	1,8713	0,02151	444,74	470,55	1,8514	0,01793	442,83	467,93	1,8333
100	0,02754	455,82	483,36	1,8994	0,02244	454,20	481,13	1,8801	0,01878	452,50	478,79	1,8628
110	0,02856		493,74	1,9268	0,02333	463,71	491,70	1,9081	0,01958	462,17	489,59	1,8914
120	0,02956	474,62	504,17	1,9537	0,02420	473,27	502,31	1,9354	0,02036	471,87	500,38	1,9192
130	0,03053	484,16	514,69	1,9801	0,02504	482,91	512,97	1,9621	0,02112	481,63	511,19	1,9463
140	0,03150	493,81	525,30	2,0061	0,02587	492,65	523,70	1,9884	0,02186	491,46	522,05	1,9730
150	0,03244	503,57	536,02	2,0318	0,02669	502,48	534,51	2,0143	0,02258	501,37	532,98	1,9991
160	0,03338	513,46	546,84	2,0570	0,02750	512,43	545,43	2,0398	0,02329	511,39	543,99	2,0248
170	0,03431	523,46	557,77	2,0820	0,02829	522,50	556,44	2,0649	0,02399	521,51	555,10	2,0502
180	0,03523	533,60	568,83	2,1067	0,02907	532,68	567,57	2,0898	0,02468	531,75	566,30	2,0752

Aluno:	Matrícula:	
	2ª Avaliação – Refrigeração e Ar Condicionado – Duração: 2hrs/Aula	

TABEI	LA B.5.2	(continua)	ção)									
R-134a superaquecido												
Temp.	v (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg K)	v (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg K)	v (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg K
	1	1600 kPa	(57,90°C	:)	2	2000 kPa	(67,48°C	:)	3	8000 kPa	(86,20°C	:)
Sat.	0,01215	407,11	426,54	1,7051	0,00930	410,15	428,75	1,6991	0,00528	411,83	427,67	1,6759
60	0,01239	409,49	429,32	1,7135		-	-	-		-	-	
70	0,01345	420,37	441,89	1,7507	0,00958	413,37	432,53	1,7101		-	-	-
80	0,01438	430,72	453,72	1,7847	0,01055	425,20	446,30	1,7497		-	-	-
90	0,01522	440,79	465,15	1,8166	0,01137	436,20	458,95	1,7850	0,00575	418,93	436,19	1,6995
100	0,01601	450,71	476,33	1,8469	0,01211	446,78	471,00	1,8177	0,00665	433,77	453,73	1,7472
110	0,01676	460,57	487,39	1,8762	0,01279	457,12	482,69	1,8487	0,00734	446,48	468,50	1,7862
120	0,01748	470,42	498,39	1,9045	0,01342	467,34	494,19	1,8783	0,00792	458,27	482,04	1,8211
130	0,01817	480,30	509,37	1,9321	0,01403	477,51	505,57	1,9069	0,00845	469,58	494,91	1,8535
140	0,01884	490,23	520,38	1,9591	0,01461	487,68	516,90	1,9346	0,00893	480,61	507,39	1,8840
150	0,01949	500,24	531,43	1,9855	0,01517	497,89	528,22	1,9617	0,00937	491,49	519,62	1,9133
160	0,02013	510,33	542,54	2,0115	0,01571	508,15	539,57	1,9882	0,00980	502,30	531,70	1,9415
170	0,02076	520,52	553,73	2,0370	0,01624	518,48	550,96	2,0142	0,01021	513,09	543,71	1,9689
180	0,02138	530,81	565,02	2,0622	0,01676	528,89	562,42	2,0398	0,01060	523,89	555,69	1,9956
	4	1000 kPa	(100,33°C	2)	6000 kPa				10 000 kPa			
Sat.	0,00252	394,86	404,94	1,6036		-	-	-		-	-	-
90	-	-	-	-	0,001059	328,34	334,70	1,4081	0,000991	320,72	330,62	1,3856
100	-	-		-	0,001150	346,71	353,61	1,4595	0,001040	336,45	346,85	1,4297
110	0,00428	429,74	446,84	1,7148	0,001307	368,06	375,90	1,5184	0,001100	352,74	363,73	1,4744
120	0,00500	445,97	465,99	1,7642	0,001698	396,59	406,78	1,5979	0,001175	369,69	381,44	1,5200
130	0,00556	459,63	481,87	1,8040	0,002396	426,81	441,18	1,6843	0,001272	387,44	400,16	1,5670
140	0,00603	472,19	496,29	1,8394	0,002985	448,34	466,25	1,7458	0,001400	405,97	419,98	1,6155
150	0,00644	484,15	509,92	1,8720	0,003439	465,19	485,82	1,7926	0,001564	424,99	440,63	1,6649
160	0,00683	495,77	523,07	1,9027	0,003814	479,89	502,77	1,8322	0,001758	443,77	461,34	1,7133
170	0,00718	507,19	535,92	1,9320	0,004141	493,45	518,30	1,8676	0,001965	461,65	481,30	1,7589
180	0,00752	518,51	548,57	1,9603	0,004435	506,35	532,96	1,9004	0,002172	478,40	500,12	1,8009

PROF. RODRIGO LISITA RIBERA

Aluno:	
	2ª Avaliação – Refrigeração e Ar Condicionado – Duração: 2hrs/Aula ***
Questão (ítem	01 (Valor 1,0) Para os enunciados a seguir, marque verdadeiro ou falso para cada
sua massa () A : número d () En mistura p () A :	massa molar "M" de um gás é obtida por: M=m*n, sendo m a massa em Kg e n o
Questão ítem	02 (Valor 1,0) Para os enunciados a seguir, marque verdadeiro ou falso para cada
somatória temperati () No somatória à mesma () A componer () En	o modelo de Amagat, uma mistura de vários gases terá o volume total igual à dos volumes dos constituintes considerados individualmente à mesma pressão e ura da mistura o modelo de Dalton, uma mistura de gases ideais terá a pressão total igual à a das pressões exercidas por cada um dos constituintes considerados individualmente temperatura e volume da mistura fração molar y pode ser calculada como: y= ni * n, sendo ni o número de mols do nte e n o número de mols da mistura n uma mistura, a pressão parcial de cada gás pode ser calculada pela multiplicação molar pela pressão total da mistura
de Ga	03 (Valor 1,0) Um gás é composto por 15% de Nitrogênio (M=28,013Kg/Kmol), 20% ás Carbônico (M=44,01Kg/Kmol) e 65% de Metano (M=16,04 Kg/Kmol). A mistura a 240 Kpa e 330K, e possui 1,5Kmol
() Ai () Oi () Ai () Ai () Aj	fração molar do Nitrogênio é de 15% número de mols do Nitrogênio é menor do que 0,3Kmol massa do Nitrogênio é maior do que 5 Kg fração mássica de cada componente é igual à fração molar de seus componentes pressão parcial do Nitrogênio é maior do que 30KpaEspaço para cálculos

-----Espaço para cálculos-----

Aluno:	Matrícula:
	2ª Avaliação – Refrigeração e Ar Condicionado – Duração: 2hrs/Aula

Questão 04	4 (Valor 1,0) Para os enunciados a seguir, marque verdadeiro ou falso para cada
ítem	
() Ars	seco é o que não contém vapor de água
() A p	ressão parcial do vapor de água no ar úmido é maior do que a pressão parcial do
vapor de á	gua no ar saturado
() Se a	a temperatura de bulbo umido é igual à temperatura de bulbo seco, a temperatura
de orvalho	também é igual
() A u	midade relativa é a razão entre a fração molar de vapor de água pela fração molar
máxima de	e vapor de água
() A u	midade relativa é a razão entre a pressão parcial de vapor de água e a pressão de
` '	do vapor de água.

PROF. RODRIGO LISITA RIBERA

Aluno:	Matrícula:	
	2ª Avaliação – Refrigeração e Ar Condicionado – Duração: 2hrs/Aula	

Questão 05 (Valor 3,0) Uma sala de $10m \times 10m \times 2m$ contém ar úmido a 30° C e 101.3KPa e umidade relativa de 70%. O ar é resfriado à pressão constante, para 20° C. Determine a transferência de calor necessária, em KJ.

Aluno: _	Matrícula:
	2ª Avaliação – Refrigeração e Ar Condicionado – Duração: 2hrs/Aula

Questão	06 – (Valor 3,0). Ar úmido a 30°C, 101,3KPa e umidade relativa de 75% escoa
atra	és de uma serpentina de resfriamento. A vazão volumétrica é de 100 m^3/min. O ar
sai a	15°C, 101,3KPa e umidade relativa de 92%. Determine:

- a) Vazão mássica de ar seco
- b) Vazão mássica do condensado deixando a serpentina
- c) Taxa de transferência de calor