Rodrigo Lisita Ribera

Transferência de Calor - Formulário *Ciências Térmicas*

Transferência de Calor - Formulário

Rodrigo Lisita Ribera

29 de abril de 2020

Sumário

Sumarı	o
Aprese i	ntação
1 Equ	ações
Equaçõ	ies
1.1	Calor e simbolos
1.2	Energia
1.3	Primeira Lei
1.4	Calor específico
1.5	Equação dos gases ideais
1.6	Equação de Transferência de calor
1.7	Equação da Difusão de calor
1.8	Resistências térmicas
1.9	Condução transiente - Método da Capacitância global

Apresentação

- Esta é uma obra em desenvolvimento. Grande esforço é colocado para garantir que o texto e as fórmulas estejam corretas. Qualquer erro encontrado, por favor nos comunique.
- Procure sempre utilizar a versão mais recente do documento, que está disponível em:

<www.cienciastermicas.com>

• Essa versão foi atualizada em: 29 de abril de 2020

Equações

1.1 Calor e simbolos

- Calor é energia térmica em trânsito devido a um gradiente de temperatura.
- Em termodinâmica calor é representado por Q [Joules] e a taxa de calor por \dot{Q} [Watts]
- Em transferência de Calor a Taxa de Calor é representada por q [Watts] e o fluxo por q'' [Watts/m²]

1.2 Energia

$$E = U + E_K + E_P + \dots {(1.1)}$$

Sendo:

- U: energia interna, composta por:
 energia térmica, na forma de calor sensível e calor latente
 energia atômica
 energia química
- E_K : energia cinética

$$E_K = \frac{mV^2}{2}$$

• E_P : energia potencial

$$E_P = m.g.z$$

• Outras forma de energia, tais como elástica, acústica, etc

1.3 Primeira Lei

A taxa de variação de energia no sistema (variação de energia ao longo do tempo) é igual ao calor adicionado da vizinhança no sistema mais o trabalho realizado pela vizinhança no sistema, mais as taxas de energia que entram menos a que saem do sistema.

$$\frac{dE}{dt} = \dot{Q} + \dot{W} + \dot{E}_{entra} - \dot{E}_{sai} \tag{1.2}$$

Capítulo 1. Equações

Para regime permanente todas as derivadas temporais são nulas.: $\frac{\partial}{\partial t} = 0$.

$$dE = \delta Q + \delta W \tag{1.3}$$

- Variação de Energia é uma diferencial exata pois depende dos estados final e inicial.
- Calor e trabalho são diferenciais inexatas pois não são propriedades de estado.

A primeira Lei também pode ser escrita considerando o trabalho realizado pelo sistema na vizinhança como positivo:

$$dE = \delta Q - \delta W \tag{1.4}$$

Para sistema fechado:

$$dU + dE_K + dE_P = \delta Q + \delta W \tag{1.5}$$

Para sistema aberto ou Volume de controle

$$dU + d(PV) + dE_K + dE_P = \delta Q + \delta W \tag{1.6}$$

ou

$$dH + dE_K + dE_P = \delta Q + \delta W \tag{1.7}$$

sendo $H \equiv U + P.V$. A parcela P.V é denominada trabalho de fluxo.

1.4 Calor específico

$$C = \frac{\delta Q}{\Delta T} \tag{1.8}$$

sendo C = m.c:

- C: poder calorífico
- m: massa
- c: calor específico

$$c_{\nu} = \left(\frac{\partial u}{\partial t}\right)_{\nu} \tag{1.9}$$

$$c_P = \left(\frac{\partial h}{\partial t}\right)_P \tag{1.10}$$

1.5 Equação dos gases ideais

$$P.V = m.R.T \tag{1.11}$$

$$R = \frac{R}{M}$$

$$\bar{R} = 8314 \left[\frac{J}{kmol.K} \right]$$

$$M = \text{massa molar} = \frac{m}{n}$$

$$n = \text{número de mols}$$
(1.12)

$$P.\nu = R.T \tag{1.13}$$

$$P = \rho.R.T \tag{1.14}$$

$$P.V = n.\bar{R}.T \tag{1.15}$$

1.6 Equação de Transferência de calor

• Equação de Fourier (condução):

$$\vec{q} = -k.A.\nabla T \tag{1.16}$$

Em coordenadas cartesianas:

$$\vec{q} = -k.A. \left(\frac{\partial T}{\partial x} \vec{i} + \frac{\partial T}{\partial y} \vec{j} + \frac{\partial T}{\partial z} \vec{k} \right)$$
 (1.17)

• Lei de Resfriamento de Newton (Convecção)

$$q = h.A_s.(T_s - T_{\infty}) \tag{1.18}$$

• Radiação:

Constante de Stefan-Boltzmann

$$\sigma = 5,67.10^{-8} \left[\frac{W}{m^2 K^4} \right] \tag{1.19}$$

Taxa de Calor emitida pela superfície:

$$q_E = \epsilon \sigma . A_s T_s^4 \tag{1.20}$$

sendo ϵ a emissividade do corpo

Taxa de Calor absorvida pela superfície:

$$q_{abs} = \alpha.G \tag{1.21}$$

Sendo G a taxa de calor que "chega" na superfície do corpo em análise e α a absortividade do corpo.

Para um corpo imerso num meio muito maior e $\epsilon = \alpha$:

$$q_{rad} = \epsilon \sigma A_s (T_s^4 - T_{vizinhanca}^4)$$
 (1.22)

1.7 Equação da Difusão de calor

$$\rho.c.\frac{\partial T}{\partial t} = \nabla.(K.\nabla T) + \dot{q}$$
(1.23)

• Sistema de Coordenadas Retangular

T=T(x,y,z)

$$\rho.c.\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(K_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_y \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial T}{\partial z} \right) + \dot{q}$$
(1.24)

• Sistema de Coordenadas Cilindricas

 $T=T(r,\theta,z)$

$$\rho.c.\frac{\partial T}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left(K_r.r.\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\partial \theta}\left(K_\theta\frac{\partial T}{\partial \theta}\right) + \frac{\partial}{\partial z}\left(K_z\frac{\partial T}{\partial z}\right) + \dot{q}$$
(1.25)

• Sistema de Coordenadas Esféricas

 $T=T(r,\theta,\phi)$

$$\rho.c.\frac{\partial T}{\partial t} = \frac{1}{r^2}\frac{\partial}{\partial r}\left(K_r r^2 \frac{\partial T}{\partial r}\right) + \frac{1}{r^2 sen^2 \phi} \frac{\partial}{\partial \theta}\left(K_\theta \frac{\partial T}{\partial \theta}\right) + \frac{1}{r^2 sen \phi} \frac{\partial}{\partial \phi}\left(K_\phi sen \phi \frac{\partial T}{\partial \phi}\right) + \dot{q}$$
(1.26)

1.8 Resistências térmicas

$$\Delta T = R.q \tag{1.27}$$

Resistência equivalente:

- Resistências em série: $R_{eq} = \sum R_i$
- Resistências em paralelo: $\frac{1}{R_{eq}} = \sum \frac{1}{R_i}$
- Resistência à convecção

$$R = \frac{1}{h.A} \tag{1.28}$$

• Resistência à condução

Coordenadas cartesianas:

$$R = \frac{L}{k \cdot A} \tag{1.29}$$

Coordenadas cilíndricas:

$$R = \frac{\ln\left(\frac{r_2}{r_1}\right)}{2 k L} \tag{1.30}$$

Coordenadas esféricas

$$R = \frac{\frac{1}{r_1} - \frac{1}{r_2}}{4.k} \tag{1.31}$$

1.9 Condução transiente - Método da Capacitância global

$$Bi = \frac{h.L_c}{k} = \frac{\Delta T_{corpo}}{T_s - T_{\infty}} = \frac{R_{conducao}}{R_{conveccao}}$$
 (1.32)

sendo L_c o comprimento característico, associado à distância da maior diferença de temperatura no corpo. Para geometrias complexas, aproximação: $L_c = \frac{V}{A_s}$.

$$\frac{\theta}{\theta_i} = exp\left[-\frac{t}{\tau}\right] \tag{1.33}$$

$$\ln\left(\frac{\theta}{\theta_i}\right) = -\frac{t}{\tau} \tag{1.34}$$

- $\theta = T T_{\infty}$
- $\theta_i = T_i T_{\infty}$
- Constante de tempo térmica: $\tau = \frac{\rho.V.c}{h.A}$