DISCIPLINA: TRANSFERÊNCIA DE CALOR PROF. DR. RODRIGO LISITA RIBERA

Aluno:		Matrícula:		
	1ª Avaliação – Duração: 2hrs/Aula			

- 1ª Questão (2 pontos). Um determinado material possui condutiviade térmica de K=50.
- a) Qual a unidade de k no sistema internacional de unidades, com a temperatura expressa em Kelvin?
- b) Qual o valor da condutividade se a temperatura for expressa em °C? Justifique sua resposta.
- $2^{\rm a}$ Questão (2 pontos). Considere o sistema mostrado na figura, em que duas paredes estão em contato, e cada uma também está sujeita à transferência de calor por convecção. Considerando que suas espessuras são iguais (L_1 = L_2), e o perfil de temperaturas representado, qual das paredes possui maior condutividade térmica?

- 3^a Questão (1 ponto). Considere transferência de calor unidimensional em regime permanente através de uma parede plana exposta à convecção para o ar ambiente em ambos os lados, com temperaturas conhecidas T_{∞} , 1_{∞} 1_{∞} coeficientes de transferência de calor por convecção n_1 n_2 Como você determinaria a temperatura em cada superfície, considerando que o fluxo de calor q[W] seja conhecido?
- 4ª Questão (1 ponto). Considere transferência de calor unidimensional em regime permanente através da parede de um recinto. Devido à velocidade do vento, o coeficiente de transferência de calor por convecção no lado externo é três vezes maior do que o coeficiente de transferência de calor por convecção no lado interno. Em qual superfície da parede a temperatura será mais próxima da temperatura do ambiente (ambiente interno ou ambiente externo)?
- 5ª Questão (2 pontos). Aproxime a derivada da função $f(x)=x^2+2$ xem x=3, por diferenças finitas atrasadas, avançadas e centradas. Utilize $\Delta x=1$
- 6ª Questão (2 pontos). Uma placa plana de metal possui lados de tamanho Lx=Ly=1m e condutividade térmica uniforme k. Ela está termicamente isolada nas faces, possui espessura desprezível. Considere que os pontos 1, 2, 3, 7, 8 e 9 são mantidos às temperaturas $T_1, T_2, T_3, T_7, T_8, T_9$, respectivamente. O ponto 4 troca calor com um fluido à temperatura T_{∞} e coeficiente de troca de calor por convecção h. Para uma malha de 3x3 pontos, monte o sistema matricial Ax=B para determinar as temperaturas T_4, T_5, T_6 . Considere $\Delta x = \Delta y$ e $\Delta z = 1[m]$.

DISCIPLINA: TRANSFERÊNCIA DE CALOR PROF. DR. RODRIGO LISITA RIBERA

Aluno:			Matrícula:
		Ouração: 2hrs/Aula ***	
m -	T_{7}	T_{8}	T_{9}
T_{∞} ,h	T_{4}	T_{5}	T_{6}
	T_{1}	T_{2}	T_3