| Properties at 300 K         |         |  |           | -          | Pro | • |  | Tempera |           | 1         |    |  |      |
|-----------------------------|---------|--|-----------|------------|-----|---|--|---------|-----------|-----------|----|--|------|
| Melting Properties at 300 K |         |  |           | Pro        | •   |   |  |         |           |           |    |  |      |
|                             | Melting |  | Propertie | s at 300 K |     |   |  | k (W    | /m · K)/c | , (J/kg·K | .) |  | <br> |

**TABLE A.4** Thermophysical Properties of Gases at Atmospheric Pressure<sup>a</sup>

| T<br>(K) | $ ho (kg/m^3)$ | $(\mathbf{k} \mathbf{J}/\mathbf{k} \mathbf{g} \cdot \mathbf{K})$ | $\frac{\mu \cdot 10^7}{(\mathbf{N} \cdot \mathbf{s}/\mathbf{m}^2)}$ | $\frac{\nu \cdot 10^6}{(\text{m}^2/\text{s})}$ | $\frac{k \cdot 10^3}{(\text{W/m} \cdot \text{K})}$ | $\frac{\alpha \cdot 10^6}{(\text{m}^2/\text{s})}$ | Pr    |
|----------|----------------|------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|---------------------------------------------------|-------|
| Air, M   | = 28.97  kg/k  | kmol                                                             |                                                                     |                                                |                                                    |                                                   |       |
| 100      | 3.5562         | 1.032                                                            | 71.1                                                                | 2.00                                           | 9.34                                               | 2.54                                              | 0.786 |
| 150      | 2.3364         | 1.012                                                            | 103.4                                                               | 4.426                                          | 13.8                                               | 5.84                                              | 0.758 |
| 200      | 1.7458         | 1.007                                                            | 132.5                                                               | 7.590                                          | 18.1                                               | 10.3                                              | 0.737 |
| 250      | 1.3947         | 1.006                                                            | 159.6                                                               | 11.44                                          | 22.3                                               | 15.9                                              | 0.720 |
| 300      | 1.1614         | 1.007                                                            | 184.6                                                               | 15.89                                          | 26.3                                               | 22.5                                              | 0.707 |
| 350      | 0.9950         | 1.009                                                            | 208.2                                                               | 20.92                                          | 30.0                                               | 29.9                                              | 0.700 |
| 400      | 0.8711         | 1.014                                                            | 230.1                                                               | 26.41                                          | 33.8                                               | 38.3                                              | 0.690 |
| 450      | 0.7740         | 1.021                                                            | 250.7                                                               | 32.39                                          | 37.3                                               | 47.2                                              | 0.686 |
| 500      | 0.6964         | 1.030                                                            | 270.1                                                               | 38.79                                          | 40.7                                               | 56.7                                              | 0.684 |
| 550      | 0.6329         | 1.040                                                            | 288.4                                                               | 45.57                                          | 43.9                                               | 66.7                                              | 0.683 |

Table A.6 Thermophysical Properties of Saturated Water<sup>a</sup>

| Tempera-<br>ture, T | Pressure,    | Spec<br>Volu<br>(m <sup>3</sup> / | ıme   | Heat of Vaporization, $h_{fg}$ | Spe<br>He<br>(kJ/k | eat       |                    | osity<br>s/m²)     | Cond             | ermal<br>uctivity<br>m·K) |        | andtl<br>mber | Surface Tension, $\sigma_f \cdot 10^3$ | Expansion Coefcient, $\beta_f \cdot 10^6$ | Temper- |
|---------------------|--------------|-----------------------------------|-------|--------------------------------|--------------------|-----------|--------------------|--------------------|------------------|---------------------------|--------|---------------|----------------------------------------|-------------------------------------------|---------|
| (K)                 | $p (bars)^b$ | $v_f \cdot 10^3$                  | $v_g$ | (kJ/kg)                        | $c_{p,f}$          | $c_{p,g}$ | $\mu_f \cdot 10^6$ | $\mu_g \cdot 10^6$ | $k_f \cdot 10^3$ | $k_g \cdot 10^3$          | $Pr_f$ | $Pr_g$        | (N/m)                                  | $(\mathbf{K}^{-1})$                       | T(K)    |
| 273.15              | 0.00611      | 1.000                             | 206.3 | 2502                           | 4.217              | 1.854     | 1750               | 8.02               | 569              | 18.2                      | 12.99  | 0.815         | 75.5                                   | -68.05                                    | 273.15  |
| 275                 | 0.00697      | 1.000                             | 181.7 | 2497                           | 4.211              | 1.855     | 1652               | 8.09               | 574              | 18.3                      | 12.22  | 0.817         | 75.3                                   | -32.74                                    | 275     |
| 280                 | 0.00990      | 1.000                             | 130.4 | 2485                           | 4.198              | 1.858     | 1422               | 8.29               | 582              | 18.6                      | 10.26  | 0.825         | 74.8                                   | 46.04                                     | 280     |
| 285                 | 0.01387      | 1.000                             | 99.4  | 2473                           | 4.189              | 1.861     | 1225               | 8.49               | 590              | 18.9                      | 8.81   | 0.833         | 74.3                                   | 114.1                                     | 285     |
| 290                 | 0.01917      | 1.001                             | 69.7  | 2461                           | 4.184              | 1.864     | 1080               | 8.69               | 598              | 19.3                      | 7.56   | 0.841         | 73.7                                   | 174.0                                     | 290     |
| 295                 | 0.02617      | 1.002                             | 51.94 | 2449                           | 4.181              | 1.868     | 959                | 8.89               | 606              | 19.5                      | 6.62   | 0.849         | 72.7                                   | 227.5                                     | 295     |
| 300                 | 0.03531      | 1.003                             | 39.13 | 2438                           | 4.179              | 1.872     | 855                | 9.09               | 613              | 19.6                      | 5.83   | 0.857         | 71.7                                   | 276.1                                     | 300     |
| 305                 | 0.04712      | 1.005                             | 29.74 | 2426                           | 4.178              | 1.877     | 769                | 9.29               | 620              | 20.1                      | 5.20   | 0.865         | 70.9                                   | 320.6                                     | 305     |
| 310                 | 0.06221      | 1.007                             | 22.93 | 2414                           | 4.178              | 1.882     | 695                | 9.49               | 628              | 20.4                      | 4.62   | 0.873         | 70.0                                   | 361.9                                     | 310     |
| 315                 | 0.08132      | 1.009                             | 17.82 | 2402                           | 4.179              | 1.888     | 631                | 9.69               | 634              | 20.7                      | 4.16   | 0.883         | 69.2                                   | 400.4                                     | 315     |
| 320                 | 0.1053       | 1.011                             | 13.98 | 2390                           | 4.180              | 1.895     | 577                | 9.89               | 640              | 21.0                      | 3.77   | 0.894         | 68.3                                   | 436.7                                     | 320     |
| 325                 | 0.1351       | 1.013                             | 11.06 | 2378                           | 4.182              | 1.903     | 528                | 10.09              | 645              | 21.3                      | 3.42   | 0.901         | 67.5                                   | 471.2                                     | 325     |
| 330                 | 0.1719       | 1.016                             | 8.82  | 2366                           | 4.184              | 1.911     | 489                | 10.29              | 650              | 21.7                      | 3.15   | 0.908         | 66.6                                   | 504.0                                     | 330     |
| 335                 | 0.2167       | 1.018                             | 7.09  | 2354                           | 4.186              | 1.920     | 453                | 10.49              | 656              | 22.0                      | 2.88   | 0.916         | 65.8                                   | 535.5                                     | 335     |
| 340                 | 0.2713       | 1.021                             | 5.74  | 2342                           | 4.188              | 1.930     | 420                | 10.69              | 660              | 22.3                      | 2.66   | 0.925         | 64.9                                   | 566.0                                     | 340     |

| Aluno: | Matrícula: |  |
|--------|------------|--|
|        |            |  |

2ª Avaliação – Duração: 5hrs/Aula

#### **B.2** Gaussian Error Function<sup>1</sup>

| w    | erf w   | w    | erf w   | w    | erf w   |
|------|---------|------|---------|------|---------|
| 0.00 | 0.00000 | 0.36 | 0.38933 | 1.04 | 0.85865 |
| 0.02 | 0.02256 | 0.38 | 0.40901 | 1.08 | 0.87333 |
| 0.04 | 0.04511 | 0.40 | 0.42839 | 1.12 | 0.88679 |
| 0.06 | 0.06762 | 0.44 | 0.46622 | 1.16 | 0.89910 |
| 0.08 | 0.09008 | 0.48 | 0.50275 | 1.20 | 0.91031 |
| 0.10 | 0.11246 | 0.52 | 0.53790 | 1.30 | 0.93401 |
| 0.12 | 0.13476 | 0.56 | 0.57162 | 1.40 | 0.95228 |
| 0.14 | 0.15695 | 0.60 | 0.60386 | 1.50 | 0.96611 |
| 0.16 | 0.17901 | 0.64 | 0.63459 | 1.60 | 0.97635 |
| 0.18 | 0.20094 | 0.68 | 0.66378 | 1.70 | 0.98379 |
| 0.20 | 0.22270 | 0.72 | 0.69143 | 1.80 | 0.98909 |
| 0.22 | 0.24430 | 0.76 | 0.71754 | 1.90 | 0.99279 |
| 0.24 | 0.26570 | 0.80 | 0.74210 | 2.00 | 0.99532 |
| 0.26 | 0.28690 | 0.84 | 0.76514 | 2.20 | 0.99814 |
| 0.28 | 0.30788 | 0.88 | 0.78669 | 2.40 | 0.99931 |
| 0.30 | 0.32863 | 0.92 | 0.80677 | 2.60 | 0.99976 |
| 0.32 | 0.34913 | 0.96 | 0.82542 | 2.80 | 0.99992 |
| 0.34 | 0.36936 | 1.00 | 0.84270 | 3.00 | 0.99998 |

<sup>&</sup>lt;sup>1</sup>The Gaussian error function is defined as

$$\operatorname{erf} w = \frac{2}{\sqrt{\pi}} \int_0^w e^{-v^2} \, dv$$

The complementary error function is defined as

$$\operatorname{erfc} w \equiv 1 - \operatorname{erf} w$$

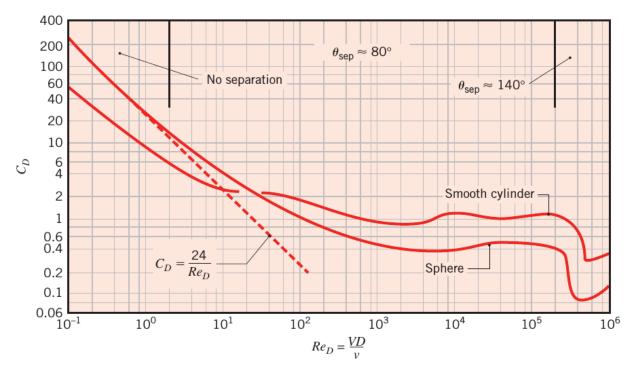
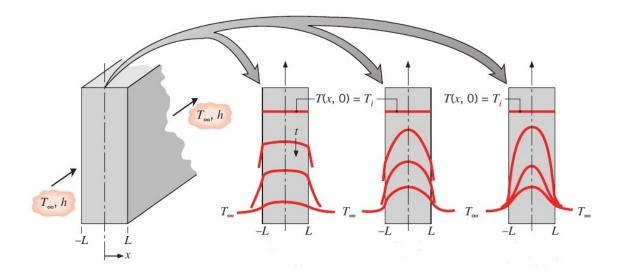



Fig. Coeficiente de arrasto para cilindro circular liso em escoamento cruzado e esfera. Ãngulos de separação da camada limite são para o cilindro. (Incropera 7ed, Fig 7.9)


### DISCIPLINA: TRANSFERÊNCIA DE CALOR

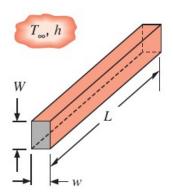
PROF. DR. RODRIGO LISITA RIBERA

| Aluno: |                                   | Matrícula: |  |
|--------|-----------------------------------|------------|--|
|        | 2ª Avaliação – Duração: 5hrs/Aula |            |  |
|        |                                   |            |  |

 $1^{\rm a}$  Questão (1.5 pontos). Considere uma placa plana de espessura 2L, inicialmente à temperatura  $T_i$ uniforme. Ela é colocada num ambiente com temperatura  $T_{\infty}$  e coeficiente de convecção h, conforme mostra a figura. Para o resfriamento uniforme da placa, responda:

- a) Para qual das imagens o método da capacitância global pode ser utilizado? Porque?
- b) Qual das imagens possui maior número de Biot?



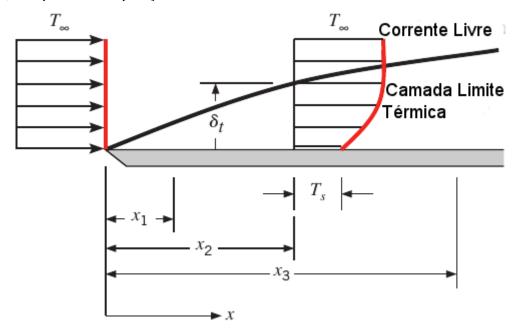

### DISCIPLINA: TRANSFERÊNCIA DE CALOR

PROF. DR. RODRIGO LISITA RIBERA

| Aluno: |                                   | Matrícula: |  |
|--------|-----------------------------------|------------|--|
|        | 2ª Avaliação – Duração: 5hrs/Aula |            |  |
|        | also bods                         |            |  |

2ª Questão (1.5 pontos). Para o caso a seguir, determine o comprimento característico apropriado Lc, e o correspondente número de Biot associado à resposta térmica transiente do objeto sólido. Determine se a aproximação pelo método da capacitância global é válida. Avalie as propriedades a T=300K.

Uma barra de aço inoxidável AISI 304 longa e quente com área de seção transversal retangular w=3mm, W=5mm e L=100mm. A barra é sujeita a um fluido refrigerante que fornece coeficiente de transferência de calor h=15W/m^2.K em toda a sua superfície.




| Aluno: |                                   | Matrícula: |  |
|--------|-----------------------------------|------------|--|
|        | 2ª Avaliação – Duração: 5hrs/Aula |            |  |
|        | district                          |            |  |

 $3^{\rm a}$  Questão (1.8 pontos). Uma empresa de seguros quer entender melhor as lesões por queimaduras, e lhe contratou como consultor. Eles estão especialmente interessados em lesões induzidas quando uma parte do corpo do trabalhador entra em contato com máquinas que estão a elevadas temperaturas, entre 50 e 100 graus Celsius. O consultor médico da empresa informou que uma lesão térmica irreversível (morte das células) ocorre emqualquer tecido vivo que é mantido à  $T \ge 48^{\circ}C$  por um tempo  $\Delta T \ge 10 \, s$ . A empresa quer informações relacionadas à extensão do dano irreversível no tecido, medida pela profundidade na superfície da pele, em função da temperatura da máquina no momento em que ocorre o contato com a pele. Assuma que a temperatura da pele esteja à temperatura de  $37^{\circ}C$ e tem propriedades equivalentes à da água líquida. Calcule a profundidade na pele que atingirá  $48^{\circ}C$ após 10s de exposição à máquina às temperaturas de  $50^{\circ}C$  e  $100^{\circ}C$ .

| Aluno: |                                   | Matrícula: |  |
|--------|-----------------------------------|------------|--|
|        | 2ª Avaliação – Duração: 5hrs/Aula |            |  |
|        |                                   |            |  |

- $4^a$  Questão (1.5 pontos). A distribuição de temperatura numa camada limite térmica laminar associada ao escoamento sobre uma placa plana isotérmica é mostrada na figura. A distribuição de temperatura mostrada está na posição x=x2.
- a) Conforme o perfil de temperaturas mostrado, a placa está sendo aquecida ou resfriada pelo fluido?
- b) Esboce os perfis de temperaturas nas posições x=x1 e x=x3. Com base nos perfis de temperaturas esboçados, em qual das três posições em x o fluxo de calor é maior?



| Aluno: |                                   | Matrícula: |  |
|--------|-----------------------------------|------------|--|
|        | 2ª Avaliação – Duração: 5hrs/Aula |            |  |
|        |                                   |            |  |

5ª Questão (1.8 pontos). Em uma aplicação particular envolvendo escoamento de ar sobre uma superfície aquecida, a distribuição de temperatura na camada limite pode ser aproximada pela seguinte equação:

$$\frac{T-T_s}{T_{\infty}-T_S}=1-\exp\left(-Pr\frac{u_{\infty}y}{v}\right), \text{ se}$$

y a distância normal à superfície e Pr=0,7. Se  $T_{\infty}$ = 400 k,  $T_s$ = 300  $Ke \frac{u_{\infty}}{v}$ = 5000  $m^{-1}$ , qual o fluxo de calor na superfície?

#### DISCIPLINA: TRANSFERÊNCIA DE CALOR

PROF. DR. RODRIGO LISITA RIBERA

| Aluno: |                                   | Matrícula: |  |
|--------|-----------------------------------|------------|--|
|        | 2ª Avaliação – Duração: 5hrs/Aula |            |  |
|        | at a trade                        |            |  |

- 6ª Questão (1.9 pontos). Considere uma esfera com diâmetro de 20mm e uma temperatura superficial de 60 graus Celsius, imersa em um fluido com temperatura de 30 graus celsius e velocidade de 2,5m/s. Calcule o arrasto e a taxa de transferência de calor quando o fluido é:
- a) água
- b) Ar à pressão atmosférica.
- c) Explique porque o resultado entre os dois fluidos é tão diferente.

$$C_d = \frac{F_d}{A_f \left( rho \frac{V^2}{2} \right)}$$
, Af=Área frontal.  $Reynolds = \frac{\rho V D}{\mu}$ ,  $\bar{N}u = \frac{\bar{h} L}{\kappa}$ 

Para o cálculo de Nusselt, utilize a correlação de Whitaker:

$$N\bar{u}_D = 2 + \left[0.4 \,\mathcal{R}_D^{1/2} + 0.06 \,\mathcal{R}_D^{2/3}\right] Pr^{0.4} \left(\frac{\mu}{\mu_s}\right),$$

sendo todas as propriedades avalidadas a  $T_{\infty}$ , exceto  $\mu_{\rm s}$ , que é avaliada à temperatura da superfície.