Aluno:		Matrícula:	
	Convecção		
	مآد مآد		

LEIA COM ATENÇÃO TODAS AS INSTRUÇÕES ABAIXO.

- 1. É obrigatório o preenchimento de TODOS os campos do cabeçalho.
- 2. Esta avaliação tem valor total de 10,0 pontos.
- 3. Prova sem consulta.
- 4. Essa avaliação compreende testes de múltipla escolha e questões discursivas.
- 5. As questões de múltipla escolha obrigatoriamente deverão ser marcadas no gabarito.
- 6. As questões discursivas deverão ser respondidas exclusivamente no espaço destinado às respostas e com TODAS as suas resoluções.
- 7. Questões respondidas com dados em desacordo aos fornecidos no enunciado serão anuladas.
- 8. Não é permitido utilizar folha adicional para cálculo ou rascunho.
- 9. Faça a prova com tinta azul ou preta, não terá direito a reclamações posteriores questões feitas a lápis.
- 10. Desligue o celular e observe o tempo disponível para resolução.
- 11. Tempo de prova: 90 minutos
- 12. A interpretação do enunciado é parte da avaliação.
- 13. É permitido apenas o uso de calculadora científica não programável.

Questão	Α	В	С	D	E
1					
2					
3					
4					
5		Di	scursi	va	
6		Di	scursi	va	

Aluno:	Matrícula:
	Convecção

	Questão 01 – Valor 1,0
x[m] e	ficiente de convecção local sobre uma placa plana é dado por: h(x)=25-4x-0,6x*x, sendo h[W/m²K] ficiente de convecção médio para 0 <x<3 td="" é:<=""></x<3>
a)7,6 b)17,2	
c)22,8	
d)11 2	

Aluno:	Matrícula:
Conv	ecção
**	**
Questão 02	– Valor 1,0
O ar a 20°C escoa sobre a superfície de uma pl largura cuja temperatura é de 80 °C com uma v calor para uma região de escoamento laminar é c	velocidade de 5 m/s. A taxa de transferência de
950 W.	
1.037 W.	
2.074 W.	
2.640 W.	
3.075 W.	

Aluno:	Matrícula:	
	Convecção	

	Questão 03 – Valor 1,0	

Ar a 15m/s e 10°C escoa sobre a superfície de uma placa de 2.5 metros de comprimento e 0.1 metros de largura, e induz uma força de arrasto de 0,062N. A potência elétrica necessária para manter a superfície em 140°C é: (demonstre os cálculos)

Maior que 500 e menor ou igual a 550 W. Maior que 550 e menor ou igual a 600 W. Maior que 600 e menor ou igual a 650 W. Maior que 650 e menor ou igual a 700 W. Nenhuma das anteriores

Aluno:		Matrícula:
	Convecção	

	Questão 04 – Valor 1,0	

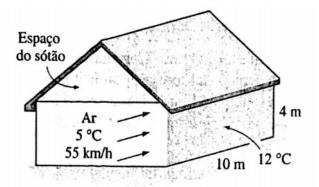
A água a 75 °C escoa sobre a superfície de uma placa de 2 metros de comprimento e 2 metros de largura cuja temperatura é de 5 °C com uma velocidade de 1,5 m/s. A força de arrasto agindo sobre a placa é: **(demonstre os cálculos)**

2,8 N.

12,3 N.

13,7 N.

15,4 N.


20,0 N.

Aluno: ____

Convecção

Ouestão 05 – Valor 3 0

Matrícula: _____

Durante um dia frio de inverno, o vento está soprando a 55 km/h paralelo a uma parede de uma casa de 4 m de altura e 10 m de comprimento. Se o ar externo está a 5 °C e a temperatura da superfície da parede é de 12 °C, determinar a taxa de perda de calor por convecção na parede.

Aluno:	Matrícula:	
	Convecção	

	Questão 06 – Valor 3,0	

Uma pessoa média gera calor a uma taxa de 84 W, enquanto está descansando. Assumindo que um quarto desse calor é perdido pela cabeça e ignorando a radiação, determinar a temperatura média da superfície da cabeça quando não está coberta e sujeita a ventos de 10°C e 25 km/h. A cabeça pode ser aproximada como uma esfera de 30 cm de diâmetro.

Aluno: _____ Matrícula: _____

Convecção ***

Formulário

$$v = \frac{V}{m} \qquad h_{lv} = h_v - h_l \qquad Q = m(h_2 - h_1) \quad x = \frac{m_{vap}}{m} \qquad W = \int_1^2 p dV$$

$$\acute{Q} = kA \frac{\Delta T}{\Delta x} \qquad \acute{m} = \rho_1 V (N_T S_T L) \qquad Nu_{D,N_L} = \frac{hD}{k}$$

$$x = \frac{m_{vap}}{m} \qquad v = \frac{V}{m} \qquad \rho = \frac{m}{V} \qquad u = u_l + x u_{lv} \qquad u_{lv} = u_v - u_l$$

$$\dot{Q} = -kA \frac{dT}{dx} \quad \dot{Q} = hA \Delta T \qquad \dot{Q} = \varepsilon \sigma \left(T_s^4 - T_{amb}^4\right) \qquad W = \int_1^2 p dV$$

$$E=U+EC+EP$$
 $h=u+pv$ $\acute{E}=\acute{Q}+\acute{W}$ $F_D=\frac{1}{2}C_D\rho V^2A$

$$\Re = \frac{\rho V x}{\mu} = \frac{V x}{\nu} N u_{D,N_L} = F. N u_D \qquad \qquad \acute{Q} = h A_s \Delta T_{ln} = \acute{m} c_p (T_s - T_e)$$

$$A_{S} = \pi DL$$
 $\dot{W}_{bomba} = \dot{V} \Delta P = \frac{\dot{m} \Delta P}{\rho}$

$$\Delta T_{\text{ln}} = \frac{\left(T_s - T_{sai}\right) - \left(T_s - T_{ent}\right)}{\ln \left[\frac{\left(T_s - T_{sai}\right)}{\left(T_s - T_{ent}\right)}\right]}$$

$$T_{sai} = T_s - (T_s - T_{ent}).e^{\left(\frac{-A_s,h}{\hat{m}.c_p}\right)}$$

$$\Delta P = N_L f_X \frac{\rho V_{m\acute{a}x}^2}{2}$$

Coeficientes médios de atrito para uma placa plana:

Aluno: ______ Matrícula: _____

Convecção

Laminar:
$$C_f = \frac{1.33}{\text{Re}_L^{1/2}}, \quad \text{Re}_L < 5 \times 10^5$$

Turbulento:
$$C_f = \frac{0.074}{\text{Re}_L^{1/5}}, \quad 5 \times 10^5 \le \text{Re}_L \le 10^7$$

Combinado:
$$C_f = \frac{0.074}{\text{Re}_L^{1/5}} - \frac{1742}{\text{Re}_L}, \quad 5 \times 10^5 \le \text{Re}_L \le 10^7$$

Nusselt médio para escoamento em placas planas.

Laminar: Nu =
$$\frac{hL}{k}$$
 = 0,664 Re_L^{0,5} Pr^{1/3}, Re_L < 5 × 10⁵

Turbulento:

Nu =
$$\frac{hL}{k}$$
 = 0,037 Re_L^{0.8} Pr^{1/3}, $0.6 \le Pr \le 60$
5 × 10⁵ ≤ Re_L ≤ 10⁷

Combinado:

Nu =
$$\frac{hL}{k}$$
 = (0,037 Re_L^{0.8} - 871) Pr^{1/3}, $0.6 \le Pr \le 60$
5 × 10⁵ ≤ Re_L ≤ 10⁷

Para escoamento cruzado entre cilindros e esferas:

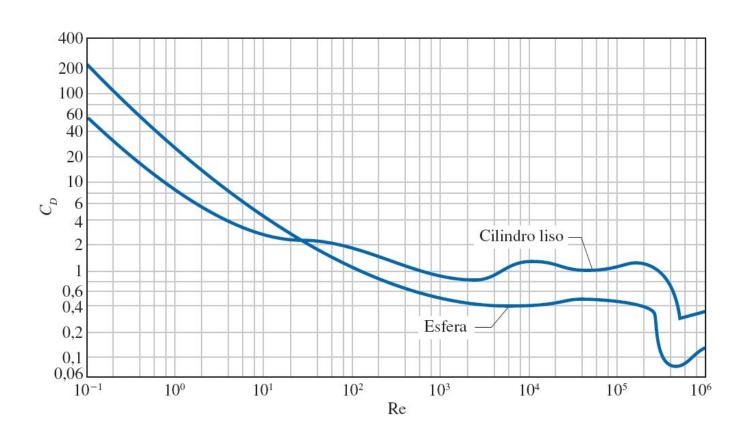
$$Nu_{cil} = \frac{hD}{k} = 0.3 + \frac{0.62 \text{ Re}^{1/2} \text{ Pr}^{1/3}}{[1 + (0.4/\text{Pr})^{2/3}]^{1/4}} \left[1 + \left(\frac{\text{Re}}{282000} \right)^{5/8} \right]^{4/5}$$

que é válido para Re Pr > 0,2, e

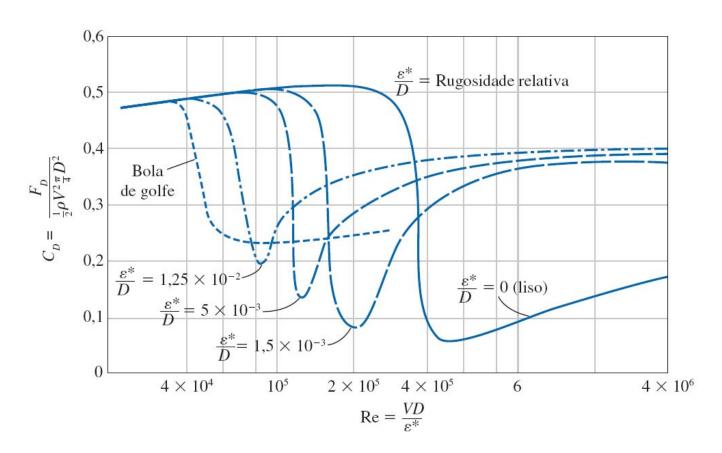
$$Nu_{esf} = \frac{hD}{k} = 2 + [0.4 \text{ Re}^{1/2} + 0.06 \text{ Re}^{2/3}]Pr^{0.4} \left(\frac{\mu_{\infty}}{\mu_{s}}\right)^{1/4}$$

que é válido para 3,5 \leq Re \leq 80000 e 0,7 \leq Pr \leq 380. As

Velocidade máxima em escoamento em banco de tubos:


Aluno:		Matrícula:
	Convecção	

Em linha e escalonado com $S_D < (S_T + D)/2$:


$$V_{\text{máx}} = \frac{S_T}{S_T - D} V$$

Escalonado com $S_D < (S_T + D)/2$:

$$V_{\text{máx}} = \frac{S_T}{2(S_D - D)} V$$

Aluno:		Matrícula:	
	Convecção		

Correlações empíricas para o número médio de Nusselt para convecção forçada sobre cilindros circulares e não circulares em escoamento cruzado (de Zukauskas, 1972, e Jakob, 1949)

Seção transversal do cilindro	Fluido	Faixa de Re	Número de Nusselt
Círculo	Gás ou líquido	0,4-4 4-40 40-4000 4000-40000 40000-400000	$\begin{aligned} \text{Nu} &= 0,989 \text{Re}^{0,330} \ \text{Pr}^{1/3} \\ \text{Nu} &= 0,911 \text{Re}^{0,385} \ \text{Pr}^{1/3} \\ \text{Nu} &= 0,683 \text{Re}^{0,466} \ \text{Pr}^{1/3} \\ \text{Nu} &= 0,193 \text{Re}^{0,618} \ \text{Pr}^{1/3} \\ \text{Nu} &= 0,027 \text{Re}^{0,805} \ \text{Pr}^{1/3} \end{aligned}$
Quadrado	Gás	5000–100000	Nu = 0,102Re ^{0,675} Pr ^{1/3}

Aluno:		Matrícula:
	Convecção	

TABELA 7-2

Correlações para número de Nusselt em escoamento cruzado sobre banco de tubos para N>16 e 0.7< Pr <500 (de Zukauskas, 1987)*

Arranjo	Faixa de Re _D	Correlação
Em linha $0-100$ $Nu_D = 0.9 \text{ Re}_D^{0.4} \text{Pr}^{0.36} (\text{Pr/Pr}_s)^{0.25}$		$Nu_D = 0.9 Re_D^{0.4} Pr^{0.36} (Pr/Pr_s)^{0.25}$
	100-1.000	$Nu_D = 0.52 \text{ Re}_D^{0.5} Pr^{0.36} (Pr/Pr_s)^{0.25}$
	$1.000-2 \times 10^5$	$Nu_D = 0.27 \text{ Re}_D^{0.63} Pr^{0.36} (Pr/Pr_s)^{0.25}$
	$2 \times 10^{5} - 2 \times 10^{6}$	$Nu_D = 0.033 \text{ Re}_D^{0.8} \text{ Pr}^{0.4} (\text{Pr/Pr}_s)^{0.25}$
Escalonado	0–500	$Nu_D = 1,04 \text{ Re}_D^{0,4} Pr^{0,36} (Pr/Pr_s)^{0,25}$
	500-1.000	$Nu_D = 0.71 \text{ Re}_D^{0.5} Pr^{0.36} (Pr/Pr_s)^{0.25}$
	$1.000-2 \times 10^5$	$Nu_D = 0.35(S_T/S_L)^{0.2} Re_D^{0.6} Pr^{0.36} (Pr/Pr_s)^{0.25}$
	$2 \times 10^5 - 2 \times 10^6$	$Nu_D = 0.031(S_7/S_L)^{0.2} Re_D^{0.8} Pr^{0.36} (Pr/Pr_s)^{0.25}$

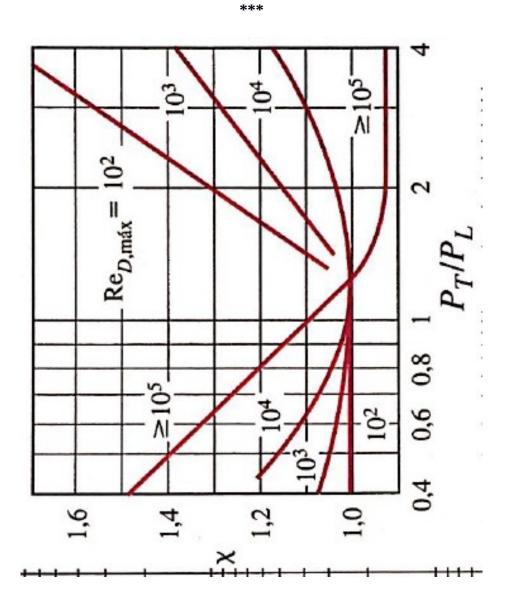
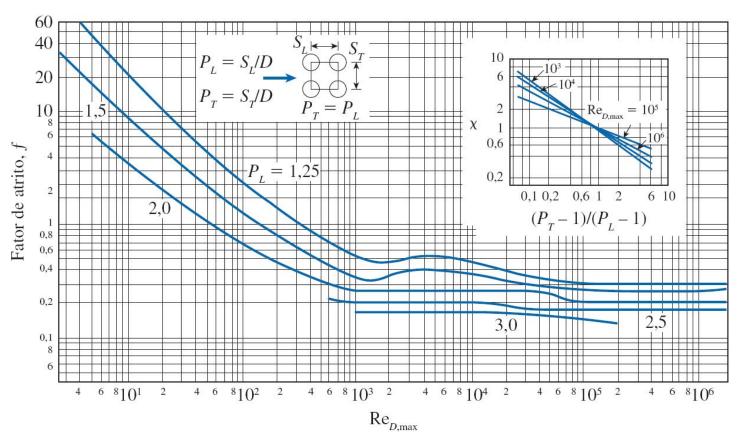
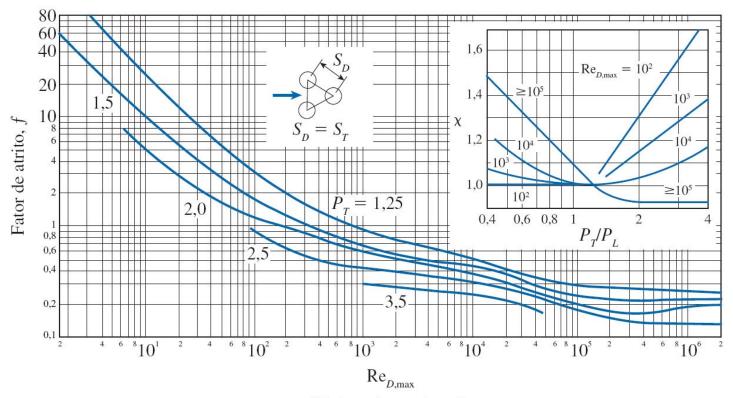

^{*} Todas as propriedades, exceto Pr_s , devem ser avaliadas na média aritmética das temperaturas de entrada e de saída do fluido (Pr_s deve ser avaliada em T_s).

TABELA 7-3


Fator de correção F a ser usado em $Nu_{D,NL<16}=FNu_D$ para $N_L>16$ e $Re_D>1.000$ (de Zukauskas, 1987)

NL	1	2	3	4	5	7	10	13
Em Linha	0,70	0,80	0,86	0,90	0,93	0,96	0,98	0,99
Escalonado	0,64	0,76	0,84	0,89	0,93	0,96	0,98	0,99


Aluno:		Matrícula:	
	Convecção		

Aluno:		Matrícula:	
	Convecção		

(a) Arranjo em linha

(b) Arranjo escalonado

Aluno:		Matrícula:	
	Convecção		

TABLE A.4 Thermophysical Properties of Gases at Atmospheric Pressure^a

T (K)	$\frac{\rho}{(kg/m^3)}$	$(\mathbf{k}.\mathbf{J}/\mathbf{k}\mathbf{g}\cdot\mathbf{K})$	$\frac{\mu \cdot 10^7}{(\text{N} \cdot \text{s/m}^2)}$	$\nu \cdot 10^6$ (m ² /s)	$k \cdot 10^3$ (W/m · K)	$\frac{\alpha \cdot 10^6}{(\text{m}^2/\text{s})}$	Pr
Air, M	= 28.97 kg/k	cmol					
100	3.5562	1.032	71.1	2.00	9.34	2.54	0.786
150	2.3364	1.012	103.4	4.426	13.8	5.84	0.758
200	1.7458	1.007	132.5	7.590	18.1	10.3	0.737
250	1.3947	1.006	159.6	11.44	22.3	15.9	0.720
300	1.1614	1.007	184.6	15.89	26.3	22.5	0.707
350	0.9950	1.009	208.2	20.92	30.0	29.9	0.700
400	0.8711	1.014	230.1	26.41	33.8	38.3	0.690
450	0.7740	1.021	250.7	32.39	37.3	47.2	0.686
500	0.6964	1.030	270.1	38.79	40.7	56.7	0.684
550	0.6329	1.040	288.4	45.57	43.9	66.7	0.683
600	0.5804	1.051	305.8	52.69	46.9	76.9	0.685
650	0.5356	1.063	322.5	60.21	49.7	87.3	0.690
700	0.4975	1.075	338.8	68.10	52.4	98.0	0.695
750	0.4643	1.087	354.6	76.37	54.9	109	0.702
800	0.4354	1.099	369.8	84.93	57.3	120	0.709
850	0.4097	1.110	384.3	93.80	59.6	131	0.716
900	0.3868	1.121	398.1	102.9	62.0	143	0.720
950	0.3666	1.131	411.3	112.2	64.3	155	0.723
1000	0.3482	1.141	424.4	121.9	66.7	168	0.726
1100	0.3166	1.159	449.0	141.8	71.5	195	0.728
1200	0.2902	1.175	473.0	162.9	76.3	224	0.728
1300	0.2679	1.189	496.0	185.1	82	257	0.719
1400	0.2488	1.207	530	213	91	303	0.703
1500	0.2322	1.230	557	240	100	350	0.685
1600	0.2177	1.248	584	268	106	390	0.688
1700	0.2049	1.267	611	298	113	435	0.685
1800	0.1935	1.286	637	329	120	482	0.683
1900	0.1833	1.307	663	362	128	534	0.67
2000	0.1741	1.337	689	396	137	589	0.673
2100	0.1658	1.372	715	431	147	646	0.66
2200	0.1582	1.417	740	468	160	714	0.65
2300	0.1513	1.478	766	506	175	783	0.64
2400	0.1448	1.558	792	547	196	869	0.630
2500	0.1389	1.665	818	589	222	960	0.613
3000	0.1135	2.726	955	841	486	1570	0.536