Aluno:	Matrícula:	
_	Convecção e Trocadores de Calor	

LEIA COM ATENÇÃO TODAS AS INSTRUÇÕES ABAIXO.

- 1. É obrigatório o preenchimento de TODOS os campos do cabeçalho.
- 2. Esta avaliação tem valor total de 10,0 pontos.
- 3. Prova sem consulta.
- 4. Essa avaliação compreende testes de múltipla escolha e questões discursivas.
- 5. As questões de múltipla escolha obrigatoriamente deverão ser marcadas no gabarito.
- 6. As questões discursivas deverão ser respondidas exclusivamente no espaço destinado às respostas e com TODAS as suas resoluções.
- 7. Questões respondidas com dados em desacordo aos fornecidos no enunciado serão anuladas.
- 8. Não é permitido utilizar folha adicional para cálculo ou rascunho.
- 9. Faça a prova com tinta azul ou preta, não terá direito a reclamações posteriores questões feitas a lápis.
- 10. Desligue o celular e observe o tempo disponível para resolução.
- 11. Tempo de prova: 90 minutos
- 12. A interpretação do enunciado é parte da avaliação.
- 13. É permitido apenas o uso de calculadora científica não programável.

Questão	Α	В	С	D	E
1					
2					
3					
4					
5		Di	scursi	va	
6	Discursiva				

Aluno:	Matricula:	
	Convecção e Trocadores de Calor	

	Ouestão 01 – Valor 1 0	

O ar a 20°C escoa sobre a superfície de uma placa de 4 metros de comprimento e 3 metros de largura cuja temperatura é de 80 °C com uma velocidade de 5 m/s. A taxa de transferência de calor para uma região de escoamento superfície é: (demonstre os cálculos)

- a) Entre 0 e 950 W.
- b) Entre 1.037 W e 2073.99W
- c) Entre 2.074 W e 2639.99W
- d) Entre 2.640 W e 3075W
- e) Maior do que 3.075 W.

Aluno:		Matrícula:	
	Convecção e Trocadores de Calor		

Questão 02 - Valor 1,0

Em uma aplicação particular envolvendo escoamento de ar sobre uma superfície aquecida, a distribuição de temperatura na camada limite pode ser aproximada pela seguinte equação:

$$\frac{T-T_s}{T_{\infty}-T_s}=1-\exp\left(-Pr\frac{u_{\infty}y}{v}\right)$$

y a distância normal à superfície e Pr=0,7. Se T_{∞} =400 k, T_{s} =300 $Ke \frac{u_{\infty}}{v}$ =5000 m^{-1} , o fluxo de calor na superfície,

em valor absoluto, é:

- a) Entre 0 e 5000W
- b) Entre 5001W e 7500W
- c) Entre 7501 W e 9000W
- d) Entre 9001W e 10500W
- e) Maior do que 10501 W

Aluno:		Matrícula:	
	Convecção e Trocadores de Calor		

Questão 03 - Valor 1,0

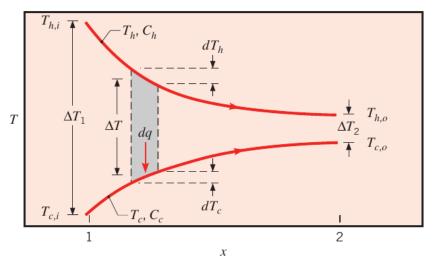
Considere uma esfera com diâmetro de 20mm e uma temperatura superficial de 60 graus Celsius, imersa em um fluido com temperatura de 30 graus celsius e velocidade de 2,5m/s. A força de arrasto e a taxa de transferência de calor quando o fluido é água são de:

Formulas:

$$C_d = \frac{F_d}{A_f \left(rho \frac{V^2}{2} \right)}, \text{ Af=\'Area frontal. } Reynolds = \frac{\rho V D}{\mu}, \ \bar{N}u = \frac{\bar{h} L}{\kappa}$$

Para o cálculo de Nusselt, utilize a correlação de Whitaker:

$$N\bar{u}_D = 2 + \left[0.4 \,\mathcal{R}_D^{1/2} + 0.06 \,\mathcal{R}_D^{2/3}\right] Pr^{0.4} \left(\frac{\mu}{\mu_s}\right),$$


sendo todas as propriedades avalidadas a T_{∞} , exceto $\mu_{\rm s}$, que é avaliada à temperatura da superfície.

Convecção e Trocadores de Calor	

Matrícula: _____

Questão 04 – Valor 1,0 (0,25 pontos por ítem)

Em um trocador de calor é obtio o seguinte perfil de temperaturas:

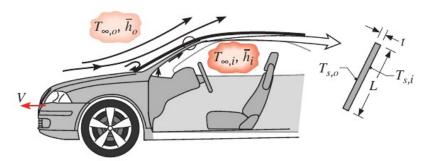
Marque Verdadeiro ou Falso para as seguintes afirmativas:

() O escoamento é paralelo

Aluno:

() É possível que o fluido frio saia com temperatura maior do que a temperatura de entrada do fluido quente () Se a vazão mássica do fluido quente aumentar, mantendo-se os demais parâmetros iguais, a temperatura de

() Se a vazao massica do fluido quente aumentar, mantendo-se os demais parametros iguais, a temperatura de saída do fluido quente irá aumentar


() Aumentando o comprimento do trocador a diferença de temperatura na saída do trocador será maior.

Aluno:		Matrícula:	
	Convecção e Trocadores de Calor		

Questão 05 - Valor 3,0

O descongelamento do para-brisas de um veículo para locais de clima frio funciona através do lançamento de ar quente no lado interno do mesmo. Para prevenir condensação do vapor de água na superfície, a temperatura do ar e o coeficiente de convecção médio devem ser grandes suficientes para manter uma temperatura da superfície Tsi que seja igual ou maior que o ponto de condensação da água (Tdp). Considere um para-brisas com comprimento L=800mm e espessura t=6mm, e condições em que o veículo viaja a 110Km/h num ambiente em que a temperatura do ar é de -15 graus Celsius. De resultados de experimentos em laboratório realizados num modelo do veículo, o coeficiente de convecção médio na superfície externa do para-brisas é determinado pela correlação NuL=0,030(ReL^0,8)[Pr^(1/3)].

As propriedades do ar podem ser aproximadas por k=0,023W/mK, viscosidade cinemática de 12,5x10-6 m²/s e Pr=0,71. Se a temperatura Tdp=10 graus Celsius e a temperatura do ar interno é de 50 graus Celcius, qual o menor valor para o coeficiente de convecção médio no lado interno necessário para evitar condensação?

Aluno:		Matrícula:
	Convecção e Trocadores de Calor	

	Questão 05 – Espaço para resolução	

Aluno:	Matrícula:
	Convecção e Trocadores de Calor

	Questão 06 – Valor 3,0

Um trocador casco e tubo com área total de 30m^2 tem óleo de motor entrando a 3Kg/s, 70°C, e água entrando a 10°C, 12Kg/s. O coeficiente de transferência de calor global é 110 W/m^2.K Determine:

- a) A taxa de transferência de Calor (1,5 pontos)
- b) As temperaturas na saída (1,5 pontos)

Aluno: ______ Matrícula: _____

Convecção e Trocadores de Calor

Formulário

$$v = \frac{V}{m}$$
 $h_{lv} = h_{v} - h_{l}$ $Q = m(h_{2} - h_{1}) \times \frac{m_{vap}}{m}$ $W = \int_{1}^{2} p dV$

$$\acute{Q} = kA \frac{\Delta T}{\Delta x} \qquad \qquad \acute{m} = \rho_1 V \left(N_T S_T L \right) \qquad N u_{D,N_L} = \frac{hD}{k}$$

$$x = \frac{m_{vap}}{m} \qquad v = \frac{V}{m} \qquad \rho = \frac{m}{V} \qquad u = u_l + x u_{lv} \qquad u_{lv} = u_v - u_l$$

$$\dot{Q} = -kA \frac{dT}{dx} \quad \dot{Q} = hA \Delta T \qquad \qquad \dot{Q} = \varepsilon \sigma \left(T_s^4 - T_{amb}^4\right) \qquad W = \int_1^2 p dV$$

$$E=U+EC+EP$$
 $h=u+pv$ $\acute{E}=\acute{Q}+\acute{W}$ $F_D=\frac{1}{2}C_D\rho V^2A$

$$\Re = \frac{\rho V x}{\mu} = \frac{V x}{\nu} N u_{D,N_L} = F. N u_D \qquad \qquad \acute{Q} = h A_s \Delta T_{ln} = \acute{m} c_p (T_s - T_e)$$

$$A_{S} = \pi DL$$
 $\dot{W}_{bomba} = \dot{V} \Delta P = \frac{\dot{m} \Delta P}{\rho}$

$$\Delta T_{\text{ln}} = \frac{\left(T_s - T_{sai}\right) - \left(T_s - T_{ent}\right)}{\ln \left[\frac{\left(T_s - T_{sai}\right)}{\left(T_s - T_{ent}\right)}\right]}$$

$$T_{sai} = T_s - (T_s - T_{ent}).e^{\left(\frac{-A_s,h}{\hat{m}.c_p}\right)}$$

$$\Delta P = N_L f_X \frac{\rho V_{m\acute{a}x}^2}{2}$$

$$NTU = NUT = \frac{UA}{C_{min}}$$

$$C = \mathring{m}.c_p$$

$$\epsilon = \frac{q}{q_{max}}; q_{max} = C_{min}. \Delta T_{max}$$

Aluno:	Matrícula:	
	Convecção e Trocadores de Calor	

1	Difusividade térmica:	$\alpha = \frac{k}{\rho . C_p}$
2	Número de Prandtl:	$\Pr = \frac{C_p \cdot \mu}{k} = \frac{\nu}{\alpha}$

3	$Re_D \equiv \frac{\rho u_m D}{\mu} = \frac{u_m D}{\nu}$	(8.1)	Número de Reynolds em dutos, dutos não circulares D=D _h
4		Re _{Dc} =2300	Número de Reynolds crítico em dutos
5	$D_h = \frac{4A_c}{P}$	(8.66)	Diâmetro hidrâulico
6	$\left(\frac{x_{\text{fd},h}}{D}\right)_{\text{lam}} \approx 0.05 Re_D$	(8.3)	Comprimento de enrada laminar
7		x _{cd,turb} /D>10	Comprimento de entrada turbulento: fluidodinâmico e térmico
8	$\left(\frac{x_{\mathrm{fd},t}}{D}\right)_{\mathrm{lam}} \approx 0.05 Re_D Pr$	(8.23)	Comprimento de entrada térmico laminar
9	$m = \rho u_m A_c$	(8.5)	Vazão mássica
1 0	$q = mc_p(T_{\text{out}} - T_{\text{in}})$	(1.12e)	Taxa de transferencia de calor
1 1	$\frac{T_s - T_m(x)}{T_s - T_{m,i}} = \exp\left(-\frac{Px}{mc_p}\overline{h}\right) \qquad T_s = \text{constant}$	(8.42)	Variação da temperatura do fluido ao longo do comprimento do duto.
1 2	$q_{\rm conv} = \overline{h} A_s \Delta T_{\rm lm}$ $T_s = {\rm constant}$	(8.43)	Taxa de tramsferência de calor
1 3	$\Delta T_{ m lm} \equiv rac{\Delta T_o - \Delta T_i}{\ln{(\Delta T_o/\Delta T_i)}}$	(8.44)	Temperatura média logaritmica
1 4	$\frac{\Delta T_o}{\Delta T_i} = \frac{T_{\infty} - T_{m,o}}{T_{\infty} - T_{m,i}} = \exp\left(-\frac{\overline{U}A_s}{mc_p}\right)$	(8.45a)	Variação da temperatura do fluido ao longo do comprimento do duto.
1 5	$q=\overline{\it U} A_s\Delta T_{ m lm}$	(8.46a)	Taxa de tramsferência de calor
1 6	$Gz_D \equiv (D/x) Re_D Pr$	(8.56)	Número de Graetz

Aluno:		Matrícula: _	
	Convegção o Trogadores do Calor		

Convecção e Trocadores de Calor

Table 7.7 Summary of convection heat transfer correlations for external flow a,b

Correlation		Geometry	Conditions
$\delta = 5x Re_x^{-1/2}$	(7.19)	Flat plate	Laminar, T_f
$C_{f,x} = 0.664 Re_x^{-1/2}$	(7.20)	Flat plate	Laminar, local, T_f
$Nu_x = 0.332 Re_x^{1/2} Pr^{1/3}$	(7.23)	Flat plate	Laminar, local, T_f , $Pr \gtrsim 0.6$
$\delta_i = \delta \ Pr^{-1/3}$	(7.24)	Flat plate	Laminar, T_f
$\overline{C}_{f,x} = 1.328 Re_x^{-1/2}$	(7.29)	Flat plate	Laminar, average, T_f
$\overline{Nu}_x = 0.664 Re_x^{1/2} Pr^{1/3}$	(7.30)	Flat plate	Laminar, average, T_f , $Pr \approx 0.6$
$Nu_x = 0.564 Pe_x^{1/2}$	(7.32)	Flat plate	Laminar, local, T_f , $Pr \lesssim 0.05$, $Pe_x \gtrsim 100$
$C_{f,x} = 0.0592 Re_x^{-1/5}$	(7.34)	Flat plate	Turbulent, local, T_f , $Re_x \lesssim 10^8$
$\delta = 0.37x Re_x^{-1/5}$	(7.35)	Flat plate	Turbulent, T_f , $Re_x \lesssim 10^8$

Table 7.7 (Continued)

Correlation		Geometry	Conditions ^c
$Nu_x = 0.0296 Re_x^{4/5} Pr^{1/3}$	(7.36)	Flat plate	Turbulent, local, T_f , $Re_x \leq 10^8$, $0.6 \leq Pr \leq 60$
$\overline{C}_{f,L} = 0.074 \ Re_L^{-1/5} - 1742 \ Re_L^{-1}$	(7.40)	Flat plate	Mixed, average, T_f , $Re_{x,c} = 5 \times 10^5$, $Re_L \lesssim 10^8$
$\overline{Nu}_L = (0.037 Re_L^{4/5} - 871) Pr^{1/3}$	(7.38)	Flat plate	Mixed, average, T_f , $Re_{x,c} = 5 \times 10^5$, $Re_L \lesssim 10^8$, $0.6 \lesssim Pr \lesssim 60$
$\overline{Nu_D} = C Re_D^m Pr^{1/3}$ (Table 7.2)	(7.52)	Cylinder	Average, T_f , $0.4 \lesssim Re_D \lesssim 4 \times 10^5$, $Pr \gtrsim 0.7$
$\overline{Nu_D} = C Re_D^m Pr^n (Pr/Pr_s)^{1/4}$ (Table 7.4)	(7.53)	Cylinder	Average, T_{∞} , $1 \leq Re_D \leq 10^6$, $0.7 \leq Pr \leq 500$
$\overline{Nu_D} = 0.3 + [0.62 Re_D^{1/2} Pr^{1/3}] \times [1 + (0.4/Pr)^{2/3}]^{-1/4}] \times [1 + (Re_D/282,000)^{5/8}]^{4/5}$	(7.54)	Cylinder	Average, T_f , $Re_D Pr \gtrsim 0.2$
$\overline{Nu_D} = 2 + (0.4 Re_D^{1/2} + 0.06 Re_D^{2/3})Pr^{0.4} \times (\mu/\mu_s)^{1/4}$	(7.56)	Sphere	Average, T_{∞} , $3.5 \lesssim Re_D \lesssim 7.6 \times 10^4$, $0.71 \lesssim Pr \lesssim 380$, $1.0 \lesssim (\mu/\mu_S) \lesssim 3.2$
$\overline{Nu_D} = 2 + 0.6 Re_D^{1/2} Pr^{1/3}$	(7.57)	Falling drop	Average, T_{∞}
$\overline{Nu_D} = C_1 C_2 Re_{D,max}^m Pr^{0.36} (Pr/Pr_i)^{1/2}$ (Tables 7.5, 7.6)	(7.58), (7.59)	Tube bank ^d	Average, \overline{T} , $10 \le Re_D \le 2 \times 10^6$, $0.7 \le Pr \le 500$
Single round nozzle	(7.71)	Impinging jet	Average, T_f , $2000 \le Re \le 4 \times 10^5$, $2 \le (H/D) \le 12$, $2.5 \le (r/D) \le 7.5$
Single slot nozzle	(7.75)	Impinging jet	Average, T_f , $3000 \le Re \le 9 \times 10^4$, $2 \le (H/W) \le 10$, $4 \le (x/W) \le 20$
Array of round nozzles	(7.73)	Impinging jet	Average, T_f , $2000 \le Re \le 10^5$, $2 \le (H/D) \le 12$, $0.004 \le A_r \le 0.04$
Array of slot nozzles	(7.77)	Impinging jet	Average, T_f , $1500 \le Re \le 4 \times 10^4$, $2 \le (H/W) \le 80$, $0.008 \le A_r \le 2.5A_{r,o}$
$\varepsilon \vec{j}_H = \varepsilon \vec{j}_w = 2.06 \ R \epsilon_D^{-0.575}$	(7.81)	Packed bed of spheres ^d	Average, \overline{T} , $90 \lesssim Re_D \lesssim 4000$, $Pr \text{ (or } Sc) \approx 0.7$

Correlations in this table pertain to isothermal surfaces; for special cases involving an unheated starting length or a uniform surface heat flux, see Section 7.2.4 or 7.2.5.

^bWhen the heat and mass transfer analogy is applicable, the corresponding mass transfer correlations may be obtained by replacing Nu and Pr by Sh and Sc, respectively.

[&]quot;The temperature listed under "Conditions" is the temperature at which properties should be evaluated.

^dFor tube banks and packed beds, properties are evaluated at the average fluid temperature, $T = (T_i + T_o)/2$.

Aluno:		Matrícula:	
	Convecção e Trocadores de Calor		

Correlation		Conditions
$f = 64/Re_D$	(8.19)	Laminar, fully developed
$Nu_D = 4.36$	(8.53)	Laminar, fully developed, uniform q_s''
$Nu_D = 3.66$	(8.55)	Laminar, fully developed, uniform T_s
$\overline{Nu}_D = 3.66 + \frac{0.0668 Gz_D}{1 + 0.04 Gz_D^{2/3}}$	(8.57)	Laminar, thermal entry (or combined entry with $Pr \gtrsim 5$), uniform T_r , $Gz_D = (D/x) Re_D Pr$
$\overline{Nu_D} = \frac{\frac{3.66}{\tanh[2.264 Gz_D^{-1/3} + 1.7 Gz_D^{-2/3}]} + 0.0499 Gz_D \tanh(Gz_D^{-1})}{\tanh(2.432 Pr^{1/6} Gz_D^{-1/6})}$	(8.58)	Laminar, combined entry, $Pr \gtrsim 0.1$, uniform T_s , $Gz_D = (D/x) Re_D Pr$
$\frac{1}{\sqrt{f}} = -2.0 \log \left[\frac{e/D}{3.7} + \frac{2.51}{Re_D \sqrt{f}} \right]$	(8.20) ^c	Turbulent, fully developed
$f = (0.790 \ln Re_D - 1.64)^{-2}$	(8.21) ^c	Turbulent, fully developed, smooth walls, $3000 \le Re_D \le 5 \times 10^6$
$Nu_D = 0.023 Re_D^{4/5} Pr^n$	$(8.60)^d$	Turbulent, fully developed, $0.6 \lesssim Pr \lesssim 160$, $Re_D \gtrsim 10,000$, $(L/D) \gtrsim 10$, $n = 0.4$ for $T_s > T_w$ and $n = 0.3$ for $T_s < T_w$
$Nu_D = 0.027 Re_D^{4/5} Pr^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$	$(8.61)^d$	Turbulent, fully developed, $0.7 \le Pr \le 16,700$, $Re_D \ge 10,000$, $L/D \ge 10$
$Nu_D = \frac{(f/8)(Re_D - 1000)Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3} - 1)}$	$(8.62)^d$	Turbulent, fully developed, $0.5 \lesssim Pr \lesssim 2000$, $3000 \lesssim Re_D \lesssim 5 \times 10^6$, $(L/D) \gtrsim 10$
$Nu_D = 4.82 + 0.0185(Re_D Pr)^{0.827}$	(8.64)	Liquid metals, turbulent, fully developed, uniform $q_s'', 3.6 \times 10^3 \lesssim Re_D \lesssim 9.05 \times 10^5, 3 \times 10^{-3} \lesssim Pr \lesssim 5 \times 10^{-2}, 10^2 \lesssim Re_D Pr \lesssim 10^4$
$Nu_D = 5.0 + 0.025(Re_D Pr)^{0.3}$	(8.65)	Liquid metals, turbulent, fully developed, uniform T_s , $Re_D Pr \gtrsim 100$

Aluno:				_ Matrícula:
	~		1 6 1	

Convecção e Trocadores de Calor

Grupo	Definição
Número de Biot (<i>Bi</i>)	$\frac{hL}{k_s}$
Número de Biot da	h_mL
transferência de massa (Bi_m)	$D_{ m AB}$
Número de Bond (Bo)	$\frac{g(ho_l- ho_v)L^2}{\sigma}$
Coeficiente de atrito (C_f)	$rac{ au_s}{ ho V^2/2}$
Número de Eckert (Ec)	$\frac{V^2}{c_p(T_s-T_\infty)}$
Número de Fourier (Fo)	$\frac{\alpha t}{L^2}$
Número de Fourier da	$D_{\mathrm{AB}}t$
transferência de massa (Fom)	L^2
Fator de atrito (f)	Δp
	$\frac{\Delta p}{(L/D)(\rho u_m^2/2)}$
Número de Grashof (Gr_L)	$\frac{g\beta(T_s-T_\infty)L^3}{v^2}$
	$ u^2$
Fator j de Colburn (j_C)	$St Pr^{2/3}$
Fator j de Colburn (j_m)	$St_m Sc^{2/3}$
Número de Jakob (Ja)	$c_p(T_s - T_{\rm sat})$
	h_{fg}

Número de Peclet
$$(Pe_L)$$

$$\frac{VL}{\alpha} = Re_L Pr$$
Número de Prandtl (Pr)
$$\frac{c_p \mu}{k} = \frac{\nu}{\alpha}$$
Número de Schmidt (Sc)
$$\frac{\nu}{D_{AB}}$$
Número de Sherwood (Sh_L)
$$\frac{h_m L}{D_{AB}}$$
Número de Stanton (St)
$$\frac{h}{\rho V c_p} = \frac{Nu_L}{Re_L Pr}$$
Número de Stanton da transferência de massa (St_m)
$$\frac{h_m}{V} = \frac{Sh_L}{Re_L Sc}$$
Número de Weber (We)
$$\frac{\rho V^2 L}{\sigma}$$

Aluno: ______ Matrícula: _____

Convecção e Trocadores de Calor

Coeficientes médios de atrito para uma placa plana:

Laminar:
$$C_f = \frac{1.33}{\text{Re}_L^{1/2}}, \quad \text{Re}_L < 5 \times 10^5$$

Turbulento:
$$C_f = \frac{0.074}{\text{Re}_L^{1/5}}, \quad 5 \times 10^5 \le \text{Re}_L \le 10^7$$

Combinado:
$$C_f = \frac{0.074}{\text{Re}_L^{1/5}} - \frac{1742}{\text{Re}_L}, \quad 5 \times 10^5 \le \text{Re}_L \le 10^7$$

Nusselt médio para escoamento em placas planas.

Laminar: Nu =
$$\frac{hL}{k}$$
 = 0,664 Re_L^{0.5} Pr^{1/3}, Re_L < 5 × 10⁵

Turbulento:

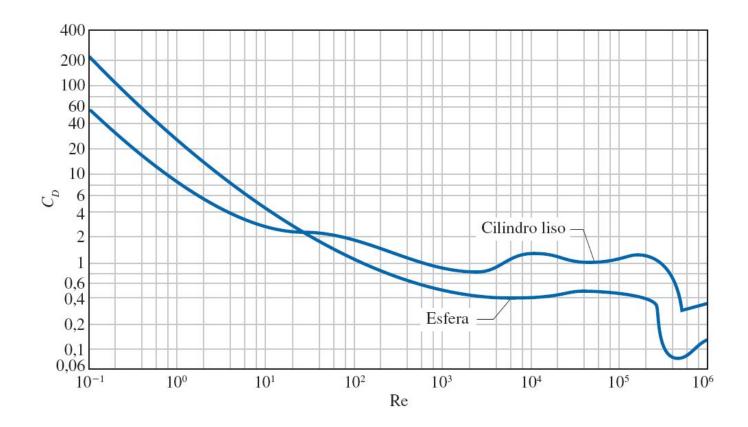
Nu =
$$\frac{hL}{k}$$
 = 0,037 Re_L^{0.8} Pr^{1/3}, $0.6 \le Pr \le 60$
5 × 10⁵ ≤ Re_L ≤ 10⁷

Combinado:

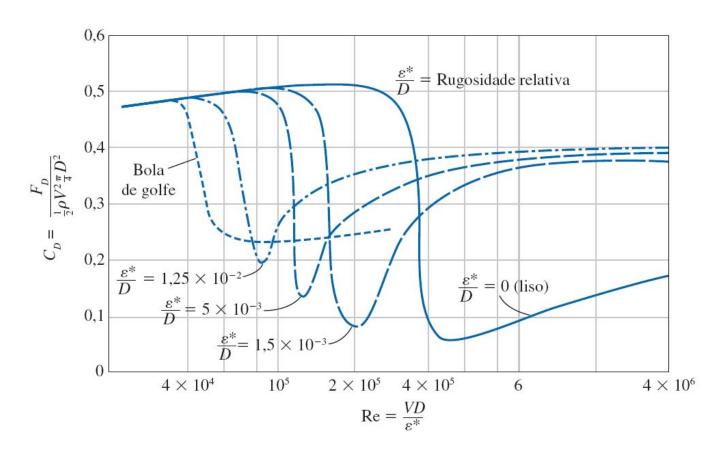
Nu =
$$\frac{hL}{k}$$
 = (0,037 Re_L^{0.8} - 871) Pr^{1/3}, $0.6 \le Pr \le 60$
5 × 10⁵ $\le Re_L \le 10^7$

Para escoamento cruzado entre cilindros e esferas:

$$Nu_{cil} = \frac{hD}{k} = 0.3 + \frac{0.62 \text{ Re}^{1/2} \text{ Pr}^{1/3}}{[1 + (0.4/\text{Pr})^{2/3}]^{1/4}} \left[1 + \left(\frac{\text{Re}}{282000} \right)^{5/8} \right]^{4/5}$$


que é válido para Re Pr > 0,2, e

$$Nu_{esf} = \frac{hD}{k} = 2 + [0.4 \text{ Re}^{1/2} + 0.06 \text{ Re}^{2/3}]Pr^{0.4} \left(\frac{\mu_{\infty}}{\mu_{s}}\right)^{1/4}$$

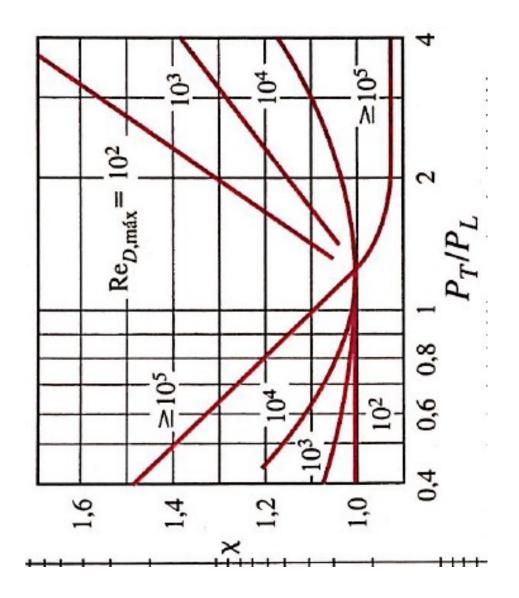

que é válido para 3,5 \leq Re \leq 80000 e 0,7 \leq Pr \leq 380. As

Velocidade máxima em escoamento em banco de tubos:

Aluno:		Matrícula:	
	Convecção e Trocadores de Calor		

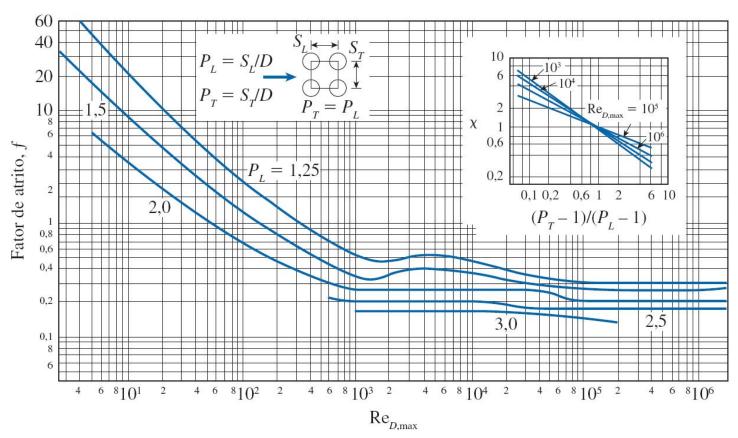
Aluno:		Matrícula:	
	Convecção e Trocadores de Calor		

Correlações empíricas para o número médio de Nusselt para convecção forçada sobre cilindros circulares e não circulares em escoamento cruzado (de Zukauskas, 1972, e Jakob, 1949)

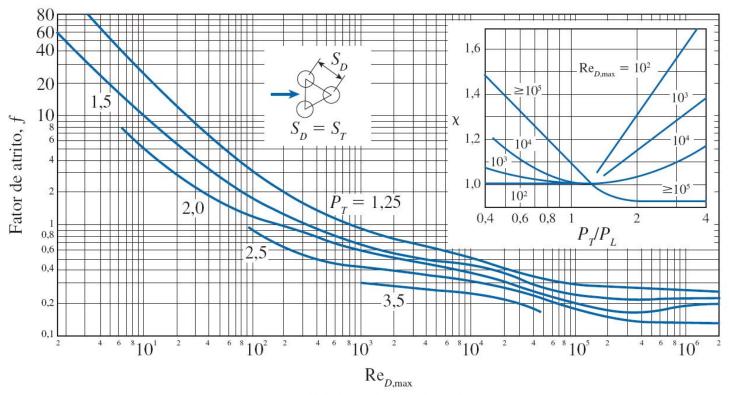

Seção transversal do cilindro	Fluido	Faixa de Re	Número de Nusselt
Círculo	Gás ou líquido	0,4-4 4-40 40-4000 4000-40000 40000-400000	$\begin{aligned} \text{Nu} &= 0,989 \text{Re}^{0,330} \ \text{Pr}^{1/3} \\ \text{Nu} &= 0,911 \text{Re}^{0,385} \ \text{Pr}^{1/3} \\ \text{Nu} &= 0,683 \text{Re}^{0,466} \ \text{Pr}^{1/3} \\ \text{Nu} &= 0,193 \text{Re}^{0,618} \ \text{Pr}^{1/3} \\ \text{Nu} &= 0,027 \text{Re}^{0,805} \ \text{Pr}^{1/3} \end{aligned}$
Quadrado	Gás	5000–100000	Nu = 0,102Re ^{0,675} Pr ^{1/3}

Aluno:	Matrícula:		
	Convecção e Trocadores de Calor		

TABELA 7-3

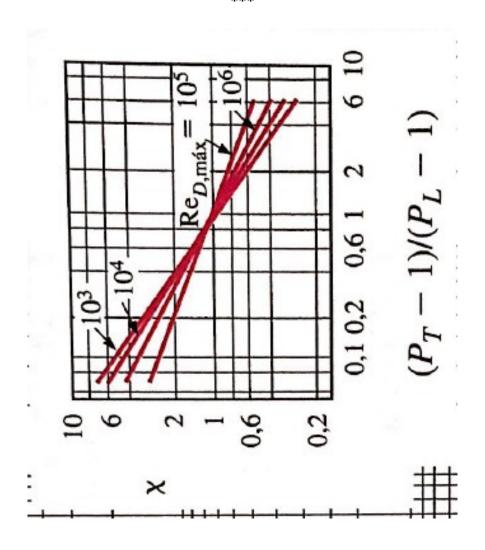

Fator de correção F a ser usado em $Nu_{D,NL<16}=FNu_D$ para $N_L>16$ e $Re_D>1.000$ (de Zukauskas, 1987)

NL	1	2	3	4	5	7	10	13
Em Linha	0,70	0,80	0,86	0,90	0,93	0,96	0,98	0,99
Escalonado	0,64	0,76	0,84	0,89	0,93	0,96	0,98	0,99



Aluno:		Matrícula:	
	Convecção e Trocadores de Calor		

**


(a) Arranjo em linha

(b) Arranjo escalonado

Aluno: _	Aluno:							Matrícula:	
			_	~	-	1	1 0 1		

Convecção e Trocadores de Calor

Aluno:		Matrícula:
	Convecção e Trocadores de Calor	

Tabela A.4: Propriedades termofísicas do ar a pressão atmosférica (Bergman et al., 2015).

T (K)	$\frac{\rho}{(kg/m^3)}$	$(k J/kg \cdot K)$	$\frac{\mu \cdot 10^7}{(\text{N} \cdot \text{s/m}^2)}$	$v \cdot 10^6$ (m ² /s)	$(W/m \cdot K)$	$\begin{array}{c} \alpha \cdot 10^6 \\ (\text{m}^2/\text{s}) \end{array}$	Pr
Air, M	= 28.97 kg/k	kmol					
100	3.5562	1.032	71.1	2.00	9.34	2.54	0.786
150	2.3364	1.012	103.4	4.426	13.8	5.84	0.758
200	1.7458	1.007	132.5	7.590	18.1	10.3	0.737
250	1.3947	1.006	159.6	11.44	22.3	15.9	0.720
300	1.1614	1.007	184.6	15.89	26.3	22.5	0.707
350	0.9950	1.009	208.2	20.92	30.0	29.9	0.700
400	0.9930	1.014	230.1	26.41	33.8	38.3	0.690
450	0.7740	1.021	250.7	32.39	37.3	47.2	0.686
500	0.6964	1.030	270.1	38.79	40.7	56.7	0.684
550	0.6329	1.040	288.4	45.57	43.9	66.7	0.683
550	0.0329	1.040	200.4	45.57	43.7	00.7	0.005
600	0.5804	1.051	305.8	52.69	46.9	76.9	0.685
650	0.5356	1.063	322.5	60.21	49.7	87.3	0.690
700	0.4975	1.075	338.8	68.10	52.4	98.0	0.695
750	0.4643	1.087	354.6	76.37	54.9	109	0.702
800	0.4354	1.099	369.8	84.93	57.3	120	0.709
850	0.4097	1.110	384.3	93.80	59.6	131	0.716
900	0.3868	1.121	398.1	102.9	62.0	143	0.720
950	0.3666	1.131	411.3	112.2	64.3	155	0.723
1000	0.3482	1.141	424.4	121.9	66.7	168	0.726
1100	0.3166	1.159	449.0	141.8	71.5	195	0.728
1100	0.5100	1.139	777.0	141.0	71.5	193	0.720
1200	0.2902	1.175	473.0	162.9	76.3	224	0.728
1300	0.2679	1.189	496.0	185.1	82	257	0.719
1400	0.2488	1.207	530	213	91	303	0.703
1500	0.2322	1.230	557	240	100	350	0.685

Aluno:		Matrícula:
	Convecção e Trocadores de Calor	

 Table A.5
 Thermophysical Properties of Saturated Fluids a

<i>T</i> (K)	ρ (kg/m ³)	$(\mathbf{k}\mathbf{J}/\mathbf{k}\mathbf{g}\cdot\mathbf{K})$	$\frac{\mu \cdot 10^2}{(\text{N} \cdot \text{s/m}^2)}$	$\nu \cdot 10^6$ (m ² /s)	$\frac{k \cdot 10^3}{(W/m \cdot K)}$	$\frac{\alpha \cdot 10^7}{(\text{m}^2/\text{s})}$	Pr	$\frac{\boldsymbol{\beta} \cdot 10^3}{(\mathbf{K}^{-1})}$
Engin	e Oil (Unuse	d)						
273	899.1	1.796	385	4280	147	0.910	47,000	0.70
280	895.3	1.827	217	2430	144	0.880	27,500	0.70
290	890.0	1.868	99.9	1120	145	0.872	12,900	0.70
300	884.1	1.909	48.6	550	145	0.859	6400	0.70
310	877.9	1.951	25.3	288	145	0.847	3400	0.70
320	871.8	1.993	14.1	161	143	0.823	1965	0.70
330	865.8	2.035	8.36	96.6	141	0.800	1205	0.70
340	859.9	2.076	5.31	61.7	139	0.779	793	0.70
350	853.9	2.118	3.56	41.7	138	0.763	546	0.70
360	847.8	2.161	2.52	29.7	138	0.753	395	0.70
370	841.8	2.206	1.86	22.0	137	0.738	300	0.70
380	836.0	2.250	1.41	16.9	136	0.723	233	0.70
390	830.6	2.294	1.10	13.3	135	0.709	187	0.70

TABLE A.	Table A.6 Thermophysical Properties of Saturated Water ^a											
Tempera-	Pressure,	Spec Volu (m³/	ıme	Heat of Vapor- ization,	Spe He (kJ/k	eat		osity s/m²)	Cond	ermal uctivity m·K)		andtl mber
(K)	$p (bars)^b$	$v_f \cdot 10^3$	v_g	$rac{h_{fg}}{(ext{kJ/kg})}$	$c_{p,f}$	$c_{p,g}$	$\mu_f \cdot 10^6$	$\mu_g \cdot 10^6$	$k_f \cdot 10^3$	$k_g \cdot 10^3$	Pr_f	Pr_g
273.15	0.00611	1.000	206.3	2502	4.217	1.854	1750	8.02	569	18.2	12.99	0.815
275	0.00697	1.000	181.7	2497	4.211	1.855	1652	8.09	574	18.3	12.22	0.817
280	0.00990	1.000	130.4	2485	4.198	1.858	1422	8.29	582	18.6	10.26	0.825
285	0.01387	1.000	99.4	2473	4.189	1.861	1225	8.49	590	18.9	8.81	0.833
290	0.01917	1.001	69.7	2461	4.184	1.864	1080	8.69	598	19.3	7.56	0.841
295	0.02617	1.002	51.94	2449	4.181	1.868	959	8.89	606	19.5	6.62	0.849
300	0.03531	1.003	39.13	2438	4.179	1.872	855	9.09	613	19.6	5.83	0.857
305	0.04712	1.005	29.74	2426	4.178	1.877	769	9.29	620	20.1	5.20	0.865
310	0.06221	1.007	22.93	2414	4.178	1.882	695	9.49	628	20.4	4.62	0.873
315	0.08132	1.009	17.82	2402	4.179	1.888	631	9.69	634	20.7	4.16	0.883
320	0.1053	1.011	13.98	2390	4.180	1.895	577	9.89	640	21.0	3.77	0.894
325	0.1351	1.013	11.06	2378	4.182	1.903	528	10.09	645	21.3	3.42	0.901
330	0.1719	1.016	8.82	2366	4.184	1.911	489	10.29	650	21.7	3.15	0.908
335	0.2167	1.018	7.09	2354	4.186	1.920	453	10.49	656	22.0	2.88	0.916
340	0.2713	1.021	5.74	2342	4.188	1.930	420	10.69	660	22.3	2.66	0.925
345	0.3372	1.024	4.683	2329	4.191	1.941	389	10.89	664	22.6	2.45	0.933
350	0.4163	1.027	3.846	2317	4.195	1.954	365	11.09	668	23.0	2.29	0.942
355	0.5100	1.030	3.180	2304	4.199	1.968	343	11.29	671	23.3	2.14	0.951
360	0.6209	1.034	2.645	2291	4.203	1.983	324	11.49	674	23.7	2.02	0.960
365	0.7514	1.038	2.212	2278	4.209	1.999	306	11.69	677	24.1	1.91	0.969
370	0.9040	1.041	1.861	2265	4.214	2.017	289	11.89	679	24.5	1.80	0.978
373.15	1.0133	1.044	1.679	2257	4.217	2.029	279	12.02	680	24.8	1.76	0.984
375	1.0815	1.045	1.574	2252	4.220	2.036	274	12.09	681	24.9	1.70	0.987
380	1.2869	1.049	1.337	2239	4.226	2.057	260	12.29	683	25.4	1.61	0.999
385	1.5233	1.053	1.142	2225	4.232	2.080	248	12.49	685	25.8	1.53	1.004
390	1.794	1.058	0.980	2212	4.239	2.104	237	12.69	686	26.3	1.47	1.013
400	2.455	1.067	0.731	2183	4.256	2.158	217	13.05	688	27.2	1.34	1.033
410	3.302	1.077	0.553	2153	4.278	2.221	200	13.42	688	28.2	1.24	1.054
420	4.370	1.088	0.425	2123	4.302	2.291	185	13.79	688	29.8	1.16	1.075

Aluno:		Matrícula:	
	Convecção e Trocadores de Calor		
	ATA ATA		

Aluno: _____ Matrícula: _____ Convecção e Trocadores de Calor ***

Flow Arrangement	Relation		
Parallel ow	$\varepsilon = \frac{1 - \exp\left[-\text{NTU}(1 + C_r)\right]}{1 + C_r}$		(11.28a)
Counterow	$\varepsilon = \frac{1 - \exp\left[-\text{NTU}(1 - C_r)\right]}{1 - C_r \exp\left[-\text{NTU}(1 - C_r)\right]}$	$(C_r < 1)$	
	$\varepsilon = \frac{\text{NTU}}{1 + \text{NTU}}$	$(C_r = 1)$	(11.29a)
Shell-and-tube			
One shell pass (2, 4, tube passes)	$\varepsilon_1 = 2 \left\{ 1 + C_r + (1 + C_r^2)^{1/2} \times \frac{1 + \epsilon}{1 - \epsilon} \right\}$	$\frac{\exp\left[-(\text{NTU})_{1}(1+C_{r}^{2})^{1/2}\right]}{\exp\left[-(\text{NTU})_{1}(1+C_{r}^{2})^{1/2}\right]}\right\}^{-1}$	(11.30a)
n shell passes $(2n, 4n, \dots$ tube passes)	$\varepsilon = \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - 1 \right] \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n \right]$	$\binom{n}{r} - C_r$	(11.31a)
Cross-ow (single pass)			
Both fluids unmixed	$\varepsilon = 1 - \exp\left[\left(\frac{1}{C_r}\right)(\text{NTU})^{0.22} \left\{\exp\left[-\frac{1}{C_r}\right]\right]\right]$	$-C_r(\text{NTU})^{0.78}] - 1\}$	(11.32)
C_{max} (mixed), C_{min} (unmixed)	$\varepsilon = \left(\frac{1}{C_r}\right)(1 - \exp\{-C_r[1 - \exp(-C_r)]\})$	NTU)]})	(11.33a)
C_{\min} (mixed), C_{\max} (unmixed)	$\varepsilon = 1 - \exp(-C_r^{-1} \{1 - \exp[-C_r(N^r)]\})$	ΓU)]})	(11.34a)
All exchangers $(C_r = 0)$	$\varepsilon = 1 - \exp\left(-\text{NTU}\right)$		(11.35a)

Aluno: _____ Matrícula: _____ Convecção e Trocadores de Calor ***

TABLE 11.4 Heat Exchanger NTU Relations

Flow Arrangement	Relation	
Parallel ow	$NTU = -\frac{\ln\left[1 - \varepsilon(1 + C_r)\right]}{1 + C_r}$	(11.28b)
Counterow	$NTU = \frac{1}{C_r - 1} \ln \left(\frac{\varepsilon - 1}{\varepsilon C_r - 1} \right) \qquad (C_r < 1)$	
	$NTU = \frac{\varepsilon}{1 - \varepsilon} \qquad (C_r = 1)$	(11.29b)
Shell-and-tube		
One shell pass	$(NTU)_1 = -(1 + C_r^2)^{-1/2} \ln \left(\frac{E-1}{E+1} \right)$	(11.30b)
(2, 4, tube passes)	$E = \frac{2/\varepsilon_1 - (1 + C_r)}{(1 + C_r^2)^{1/2}}$	(11.30c)
n shell passes	Use Equations 11.30b and 11.30c with	
$(2n, 4n, \ldots \text{ tube passes})$	$\varepsilon_1 = \frac{F - 1}{F - C_r}$ $F = \left(\frac{\varepsilon C_r - 1}{\varepsilon - 1}\right)^{1/n}$ NTU = $n(\text{NTU})_1$	(11.31b, c, d)
Cross-ow (single pass)		
C_{max} (mixed), C_{min} (unmixed)	$NTU = -\ln\left[1 + \left(\frac{1}{C_r}\right)\ln(1 - \varepsilon C_r)\right]$	(11.33b)
C_{\min} (mixed), C_{\max} (unmixed)	$NTU = -\left(\frac{1}{C_r}\right) \ln[C_r \ln(1-\varepsilon) + 1]$	(11.34b)
All exchangers $(C_r = 0)$	$NTU = -\ln(1-\varepsilon)$	(11.35b)